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I. Introduction 
 

A key concept in economics, and arguably the key concept in forensic eco-
nomics, worklife expectancy, has been treated by actuaries, demographers and 
forensic economists with different models. The Markov or multiple incre-
ment/multiple decrement model has been employed by all three groups, while 
multiple decrement theory (also known as competing risks in biometrics) rep-
resented an earlier approach and a special case, in which transitions into the 
measured state are disallowed. As discussed in Skoog-Ciecka (2004), in some 
cases, e.g., railroad worker worklife expectancy Skoog-Ciecka (1998 and 2006), 
hybrids of these two approaches may prove fruitful, given appropriate but only 
occasionally available data. In this paper we develop and extend these ideas to 
allow a look at worklife expectancy in occupations where actuarial data pro-
vides longitudinal records of transitions. Beyond worklife expectancy, we also 
develop probability mass functions (pmf’s) which enable us to calculate any 
other distributional characteristic of time devoted to a specific occupation. We 
note that occupation-specific worklives provide especially useful information 
when money earnings and fringe benefits vary by occupation and when people 
change occupations throughout their worklives. We make an extended applica-
tion utilizing data for railroad workers and show much lower worklives than 
previously calculated by others and ourselves. 

We have in mind four reasons persons engaged in an occupation exit the 
occupation: death, disability, retirement, and withdrawal (to another occupa-
tion, or out of the labor force). Ideally, we would have such data by year on in-
dividuals working in the railroad or other crafts in a region covered by a multi-
employer pension plan, e.g., carpenters, ironworkers or laborers in a metro-
politan area. We would observe a first year in which contributions are made on 
their behalf into a pension fund. We would follow them over time and record 
whether they remain in the occupation and region the next year, or whether 
they have transitioned from active to inactive due to one of the four causes 
above. Likewise, when a person who was disabled, retired or withdrawn in the 
previous period becomes active, we observe a record, whereas when such a per-
son remains inactive for a second period, we observe that event by the non-ex-
istence of a record. In this way, an increment-decrement model may be con-
structed from event-history data that an actuary would maintain. However, in 
practice, we often do not have access to such detailed event-history data; rather 
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we might have probabilities or rates of transition recorded by actuaries or 
deemed reasonable by actuaries. Our goal is to combine such actuarial inputs 
or data with proper statistical theory to estimate worklife expectancy of work-
ers in an occupation.  

Such worklife expectancy will differ conceptually from the measure we and 
others have traditionally used, since we are calculating years in both the occu-
pation and the region. We therefore caution against indiscriminant use of 
worklives for younger non-railroad craft workers (since railroad workers are 
tracked nationally) who might move from the region but remain within the oc-
cupation. For older workers, who have established roots (human capital) in the 
region and/or occupation, including job contacts, reputation, possibly seniority 
and social connections, such withdrawal into another region but the same oc-
cupation will be relatively rare, and these tables will be appropriate. Since 
some multiplayer pension funds have reciprocity rights, one can sometimes 
gauge the extent of regional transfers. We provide here multiple decrement 
estimates for railroad workers because we can compare the results with earlier 
models, the actuarial assumptions are publicly available, they are reliably 
based on experience from a large number of employee records, and workers are 
tracked across regions. 
 

II. Multiple Decrement/Competing Risk 
Theory and the Markov Model 

 
We have differentiated between event data and aggregated data. In the 

former, we have observations on individuals’ year-to-year transitions, which we 
term micro-data or event-history data. Alternatively, we might have macro-
data, estimates provided to us by actuaries derived from micro-data providing 
us with either probabilities of transitions or rates of transition, closely related 
to these underlying probabilities. 

We need extensive notation. For the Markov model, such notation is in 
place. The innovation of Skoog-Ciecka (1998, 2002, and 2006) and this paper is 
to use railroad actuarial data to refine and restrict estimates of worklife. For-
tunately the actuarial science literature provides notation and results facili-
tating this exercise; we follow Bowers, et al., (1987) and Jordan (1991). 

As usual, we compute transition probabilities between the active and inac-
tive states. Let a a

xp  be the probability that a worker who is active (logs more 
than a non-trivial number of hours, typically 250) in the first period (year) re-
mains active in the next year. Then a i

xp  is the probability such an initially ac-
tive worker goes inactive; the inactive state could represent a disability status, 
a retirement status, or a withdrawal status. That withdrawal status may in 
turn represent movement into another region or a movement out of the labor 
market altogether, for a reason other than those already mentioned. Death is 
another withdrawal from activity which is treated separately. Thus, many 
sources of decrement (transition out of the measured state) are now explicitly 
counted, and our task will be to build up an estimate of a i

xp  from such data, a 
somewhat different situation from that encountered in usual worklife construc-
tion from Current Population Survey data. For each age x we have, of course, 
that a a a i d

x x xp p p 1+ + =  and that i a i i d
x x xp p p 1+ + = . At some advanced age x, 
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death occurs with probability 1: a a a i i a i i
x x x xp p p p 0= = = = . Similarly, to esti-

mate a Markov model (or to estimate a special case thereof, such as what 
Skoog-Ciecka, 2004, termed the LPd model) and unlike the multiple decrement 
model, we need estimates of transition probabilities from the inactive state. 
These might be estimated given micro-data; alternatively, they may be pro-
vided by actuaries either as estimates or, in the multiple decrement setting, as 
assumptions that certain probabilities or rates are zero. Finally, regarding 
mortality, in the Markov setting, it is commonly assumed that a d i d d

x x xp p p= ≡ . 
This is implied by the assertion that transition to death is independent of the 
initial living state, active or inactive. This assumption of independence is 
maintained more generally in the multiple decrement literature. 

In the multiple decrement setting, let ( j )
xq be the probability of decrement 

(movement out of the counted state, a, years of activity in the usual Markov 
model above, or years in the occupation specific railroad activity, below) due to 
cause j for a person age x between ages x and x+1. The causes j are: 
 

 (1)
xq probability of death 

(1) ( 2 )
xq probability of disability 

 ( 3 )
xq  probability of retirement, and  

 ( 4 )
xq  probability of withdrawal. 

 
Since these are mutually exclusive probabilities, the probabilities are additive. 
We let τ indicate "all causes" for such transitions, so that 
 
(2a) ( τ ) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q q q q= + + +   
 
and 
 

 (2b) ( τ ) ( τ )
x xp 1 q= −   

 
where ( τ )

xp gives the probability of remaining in the initial state throughout the 
interval.  

Once the ( j )
xq are in hand, one may define decrements into state j as 

( j ) ( τ ) ( j )
x x xd l q=  from an initial number of persons in the initially active state, 

( τ )
xl , and proceed to construct a multiple decrement table in the same way that 

a single-decrement life table is constructed. 
There is a fair amount of theory beneath these symbols. LetT be a continu-

ous random variable, denoting additional time of exit from the active state or 
occupation. The equations above implicitly set T’s realization t to 1, since this 
is the first time period after initial age x which we observe. Conse-
quently ( j ) ( j )

1 x t xq q ,=  for all j. T ,  a survival time, possessing a continuous 
instantaneous force ( j )

xµ of transition, and the state J, j=1,…,m are two ran-
dom variables described by a joint pmf function T ,Jf (t, j ) . This function is con-
tinuous in the first argument and discrete in the second argument, since the 
number of states is discrete. Usual definitions and relations hold: 
 
 (3) T ,Jf (t, j ) Pr{(t T t dt) ( J j)}= < ≤ + ∩ = , 
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the definition of a continuous-discrete density; 
 
 (4) 

bj m

T ,J
j 1 a

f ( t, j )dt Pr{ a T b}
=

=
= < ≤∑ ∫ , 

 

the probability of decrement due to all causes between times a and b; 
 

 (5) 
t

T ,J
0

Pr{(0 T t) ( J j)} f ( s, j )ds< ≤ ∩ = = ∫ , 
 

the probability of transition before t into (due to cause) state j;  
 

 (6) 
t

( j )
t x T ,J

0
q f ( s, j )ds,t 0, j 1,...,m= ≥ =∫  

 
generalizing (1) and re-expressing (5); 
 

 (7) ( j )
T T ,J x

0
f ( j ) f ( s, j )ds q , j 1,...,m

∞

∞= = =∫ , 
 
the marginal distribution for J ,  the probability of decrement due to cause j at 
any time in the future.  

Now listed among the actuarial assumptions in any pension valuation will 
be specifications of mortality, disability, retirement, and withdrawal decre-
ments. One must determine whether these are net probabilities, sometimes 
called independent rates of decrements, or equivalently absolute rates of decre-
ments (1)

xq′ , ( 2 )
xq ,′  ( 3 )

xq ,′  ( 4 )
xq ,′  or whether they are instead the 

( j )
xq probabilities above. These net probabilities, also known as complementary 

associated single decrement probabilities are referred to with primes, refer to 
remaining in the state, and are given by 
 
(8) 

t
( j ) ( j ) ( j )

t x x t x
0

p exp{ µ ( s)ds } 1 q′ ′= − = −∫ .  
 
The '( )j

xq  necessarily exceed the corresponding ( j ) ( j )
x xq 1 p ,= −  as may be seen in 

the next equation, (9). 
We have said that one problem involves determining when actuarial as-

sumptions or determinations appearing in pension plan valuations refer to 
probabilities as opposed to net probabilities. Another possible problem is that 
the plan assumptions, which are often called rates, refer to central rates of dec-
rement, denoted by an actuarial symbol such as ( j )

xm , an estimator for ( j )
xµ , 

above. The relation between a central rate of decrement and the probability 
generally is x

x 1 .5qx
qm −= when there is only one source of decrement. We need 

to be able to convert these single decrement ( j )
xq′ net probabilities or ( j )

xm  
rates appearing in actuarial reports into the corresponding probabilities of 
multiple decrement ( j )

xq .  This need arises when we have only actuarial macro-
data. If we had access to the underlying actuarial event data, we could directly 
estimate the decrements. Alternatively, we could group the retirement, dis-
ability and withdrawal states into an inactive state, and proceed as with the 
ordinary analysis of CPS data, and use the mortality experience of the group (if 
its size is large enough) or impose the mortality experience from an external 
source. (U.S. Life Tables or an annuitants’ mortality table) 



 Skoog & Ciecka 247 

As a special case, but one we have noted in practice, suppose we have 
( 2 )
xq the probability of disability, ( 3 )

xq the probability of retirement, and ( 4 )
xq the 

probability of withdrawal, while (1)
xq′  comes from an associated mortality ta-

ble such as the Group Annuitants’ Mortality 1983, which provides an absolute 
rate of decrement. We need to be able to convert this latter net rate (the rate at 
which the initial population would diminish, if mortality were the only factor 
causing decrements) to the corresponding (1)

xq  probability. Starting with xl  
persons alive at x, we know that ( 2 ) ( 2 )

x x xd q l= will be disabled at x+1, 
( 3 ) ( 3 )
x x xd q l=  will retire and ( 4 ) ( 4 )

x x xd q l=  will withdraw at x+1, by definition of 
the ( j )

xq as probabilities. Now assuming that these decrements proceed linearly 
between x and x+1, at age x + ½ there will be −xl .5( ( 2 ) ( 3 ) ( 4 )

x x xd d d+ + ) remain-
ing, and it is this number, and not xl , which is on average exposed to death. 
Thus (1)

xq′ times this number or (1)
xq′ ( 2 ) ( 3 ) ( 4 ) (1)

x x x x x x{1 .5(q q q )}l q l− + + =  will 
die. Consequently we have, equating coefficients, and dividing out xl , 
 
 (9) (1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q {1 .5(q q q )}′= − + +   
 
as a simple approximation (to second order). Other approximations are possi-
ble, as are solutions based on the more complicated and exact expressions. 
(Bowers, 1987, p. 321, 323) 
 
 (9a) 

i 4
τ ( i )
x xx

i 1
1 q (1 q )

=

=

′− = −∏  
 
and 
 
 (9b) 

( j ) ( τ )
x xq /q( j ) ( τ )

x x1 q (1 q )′− = − . 
 

The left hand side of equation (9) shows that the probability of decrement 
due to death when all four sources of decrement are present (i.e., are "compet-
ing" with each other) depends on the strength of the competition–higher ( 2 )

xq , 
( 3 )
xq  or ( 4 )

xq  probabilities make it less likely that source 1 is the reason for dec-
rement. (1)

xq is only equal to the commonly reported (1)
xq′ when it is the only 

cause of decrement, the implicit assumption in ordinary mortality tables. In-
deed, a literature parallel to the multiple decrement model, as this subject is 
called in actuarial science, was developed in biostatistics and statistics gener-
ally, where it is called competing risk theory. Seal (1977) offers historical con-
text, while modern books on failure time data (Kalbfleisch and Prentice, 2002, 
Chapter 8) provide textbook treatments. 

Forensic economists have some experience with the need to derive the 
probabilities of interest in the usual construction of the Markov model, where 
we obtain death probabilities from one source (U.S. Life Tables) and (condi-
tional on survival) transition probabilities from another source, the CPS. A life 
table gives us the ordinary mortality probability, referred to above as a net 
probability, (1)

x xq q′ = , where the left-hand side is in the new notation and the 
right-hand side reflects the usual single decrement life table notation. This last 
expression is equivalent to (1)

x xp 1 q′ = − . Consequently, it is standard in the 
Markov model construction to form the relevant transition probability 
a a A A (1) A A

x x x x xp (1 q ) p p p′= − =  and a i A I (1) A I (1) ( 2 )
x x x x x x xp (1 q ) p p p p q′ ′ ′= − = =  
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out of a net probability and a conditional probability, which here is also an-
other net probability. 

Returning to (9), the objective was to calculate (1)
xq given (1)

xq′ , ( 2 )
xq , ( 3 )

xq , 
and ( 4 )

xq . More generally, given only the rates (1)
xq′ , ( 2 )

xq′ , ( 3 )
xq′ , and ( 4 )

xq′ , 
then by symmetry 
 
 (1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5( q q q )]′= − + +  
 (10) ( 2 ) ( 2 ) (1) ( 3 ) ( 4 )

x x x x xq q [1 .5( q q q )]′= − + +  
 ( 3 ) ( 3 ) (1) ( 2 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + +  
 ( 4 ) ( 4 ) (1) ( 2 ) ( 3 )

x x x x xq q [1 .5(q q q )]′= − + + . 
 
Re-arranging (10) by moving the second, third and fourth terms from the right-
hand side to the left-hand side and solving the matrix equation 

xq x xA q q′ ′= for 
x

1
x q xq A q−

′ ′=  yields the corresponding probabilities contained in the vector xq , 
where 
 

(11)
x

(1) (1) (1)
x x x

( 2 ) ( 2 ) ( 2 )
x x x

q (3 ) (3 ) ( 3 )
x x x
( 4 ) ( 4 ) ( 4 )

x x x

1 .5q .5q .5q
.5q 1 .5q .5q

A
.5q .5q 1 .5q
.5q .5q .5q 1

′

⎡ ⎤′ ′ ′
⎢ ⎥

′ ′ ′⎢ ⎥
= ⎢ ⎥

′ ′ ′⎢ ⎥
⎢ ⎥′ ′ ′⎣ ⎦

, 

(1)
x
( 2 )
x

x (3 )
x
( 4 )
x

q
q

q
q
q

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, and 

(1)
x
( 2 )

x
x ( 3 )

x
( 4 )

x

q
q

q
q
q

⎡ ⎤′
⎢ ⎥
′⎢ ⎥

′ = ⎢ ⎥
′⎢ ⎥

⎢ ⎥′⎣ ⎦

. 

 
The Appendix contains formulae for the calculation of probabilities given that 
data come in the form of three probability decrements and one net rate (as in 
(9)), two probability decrements and two net rates, one probability decrement 
and three net rates, and four net rates (i.e., the solution for the vector xq  in 
(11)). Expression (A7a) in the appendix effectively inverts the matrix

xqA ′ . 
 

III. Application to Railroad Workers 
 

As an example of the competing risks/multiple decrement theory, we utilize 
data contained in The Twenty-Third Actuarial Valuation of the US Railroad 
Retirement Board. We expand on our previous notation to incorporate the im-
portance of service years on disability, retirement, and withdrawal probabili-
ties in the following manner: 
 

 x denotes exact age, here x 17 , ,75= … ; 
ω  denotes the youngest age for which the probability of being active 

in the railroad industry is zero, here ω 95= ; 
 s denotes years of railroad service, here s 0, ,x 17= −… ; 

(1)
xq′  denotes the mortality rate between age x and x+1; 
( 2 )
x ,sq  denotes the probability of a railroad disability retirement (the 

RRB Actuary’s term) between x and x+1 given s years of service; 
( 3 )
x ,sq  denotes the probability of a railroad age retirement between x 

and x+1 given s years of service;  
( 4 )
x ,sq  denotes the probability of withdrawal from railroad work be-

tween x and x+1 given s years of service; 
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(1) (1) ( 2 ) ( 3 ) ( 4 )
x x x ,s x ,s x ,sq q [1 .5(q q q )]′= − + + , (1)

xq  denotes mortality probability, 
(1)

xq′ measures the net rate of mortality, and we use (9) above to 
transform (1)

xq′ into (1)
xq ; 

CR
x ,sWLE  denotes competing risks railroad worklife expectancy for an indi-

vidual at age x with s years of railroad service under the assump-
tion of mortality, disability, age retirement, and withdrawal as 
the competing risks. 

 

As the notation suggests, in The Twenty-Third Actuarial Valuation the 
mortality probability (1)

xq′  (and therefore the transformed (1)
xq ) is not a func-

tion of years of service; disability retirement probability ( 2 )
x ,sq  depends on both 

age and years of service; age retirement probability ( 3 )
x ,sq  is zero prior to age 60 

and it depends upon both x and s at age 60 and beyond; and the withdrawal 
probability ( 4 )

x ,sq is a function of both age and years of service.1 Disability, retire-
ment, and withdrawals are reported as probabilities but mortality is given as a 
net rate, requiring a conversion to a probability as given in (9). 

Consider a person who is in the railroad industry at age x and has s years 
of service. Then the probability of that individual remaining in the railroad 
industry at age x+1 is  
 
 (12)  (1) ( 2 ) ( 3 ) ( 4 )

1 x ,s x x ,s x ,s x ,sp 1 (q q q q )= − + + +  
 
which is the same as (2b) with the time of exit from the active state being one 
year. 

The probability of continuing as a railroad worker is defined recursively by 
 
 (13) (1) ( 2 ) (3 ) ( 4 )

i 1 x ,s i x ,s x i x i,s i x i,s i x i,s ip p [1 (q q q q )]+ + + + + + + += − + + +  
 
where i 1, ,ω x 1= − −…  and ω x x ,sp 0.− =  We note that (13) is the discrete coun-
terpart of one minus the probability in (4) where, using the notation in (4), 
a 0= , b i 1= + , and m 4= sources of decrement. 

The worklife expectancy in railroad service at exact age x for an individual 
with s years of railroad service is  
 

 (14) CR
x ,s 1 x ,s 1 x ,s 2 x ,s ω x 1 x ,s ω x x ,sWLE .5(1 p ) .5( p p ) .5( p p )− − −= + + + + + +…  

 
ω x 1

i x ,s
i 1

.5 p
− −

=
= + ∑  

 
where each term on the right-hand side of (14) reflects the usual averaging of 
beginning and ending period probabilities (i.e., assuming mid-period transi-
tions) typically used in expectancy calculations, such as average years of life 
calculations (Jordan, 1991, p. 173). The term New CR Expectancy in Table 1 
refers to railroad worklife expectancies computed with formulae (12)–(14).2 
                                                      
1The mortality-rate table in the Twenty-Third Actuarial Valuation is Table S-4, disability retire-
ments are from Table S-11, age retirements are found in Table S-10, and withdrawals are Table S-
12.  
2In Table 1 we illustrate worklife expectancies commencing at age 20 but in five-year age steps 
with service years also in five-year steps. We have produced more extensive calculations. One set is 
for the Association of American Railroads. Another set of additional tables and some extended 
calculations in a different format may be found at authors’ web sites: www.legaleconometrics.com, 
http://fac.comtech.depaul.edu/gskoog/.and http://fac.comtech.depaul.edu/jciecka/ 
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Table 1 
Worklife Expectancies of Railroad Workers Utilizing Competing Risk 

Theory and the Increment-Decrement Model 
 

 Service New CR Standard Old AAR-Type ID Standard 
Age Years Expectancy Deviation Expectancy Expectancy Deviation 
20 0 15.08 15.50 35.59 35.02 6.60 
25 0 15.40 13.80 31.33 31.08 6.02 
25 5 20.44 13.36 30.91 31.08 6.02 
30 0 14.21 12.03 27.05 28.81 6.58 
30 5 18.51 11.34 26.62 26.71 5.52 
30 10 20.20 10.74 26.20 26.71 5.52 
35 0 13.68 11.46 24.92 24.49 6.53 
35 5 16.55 9.26 22.31 24.04 5.92 
35 10 17.72 8.67 21.87 22.24 5.04 
35 15 18.43 8.22 21.45 22.24 5.04 
40 0 12.18 9.81 20.84 20.35 6.10 
40 5 15.52 8.82 20.31 20.06 6.10 
40 10 14.83 6.89 17.66 19.61 5.45 
40 15 15.13 6.60 17.21 17.80 4.53 
40 20 15.21 6.57 16.84 17.80 4.53 
45 0 10.10 7.99 16.70 16.07 5.56 
45 5 13.38 7.06 16.44 16.07 5.56 
45 10 13.75 6.56 15.90 16.00 5.45 
45 15 11.99 4.87 13.15 14.92 4.60 
45 20 11.77 5.06 12.75 13.49 3.86 
45 25 11.88 4.95 12.94 13.49 3.86 
50 0 7.44 5.88 12.55 11.88 4.97 
50 5 10.39 5.60 12.54 11.88 4.97 
50 10 10.80 5.26 12.26 11.88 4.97 
50 15 10.61 5.03 11.69 11.80 4.82 
50 20 8.34 3.50 8.83 10.11 3.59 
50 25 8.41 3.43 8.97 9.25 3.11 
50 30 8.36 3.46 9.15 9.25 3.11 
55 0 4.89 4.05 8.61 8.09 4.20 
55 5 6.64 4.28 8.61 8.09 4.20 
55 10 7.65 4.06 8.60 8.09 4.20 
55 15 7.62 3.86 8.28 8.09 4.20 
55 20 7.20 3.81 7.71 7.96 3.99 
55 25 4.81 2.01 5.01 5.27 2.15 
55 30 4.79 2.04 5.15 5.27 2.15 
55 35 4.79 2.04 5.15 5.27 2.15 
60 0 3.67 2.91 5.97 4.75 3.19 
60 5 3.85 2.87 4.75 4.83 3.36 

 
(continued) 
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Table 1 (continued) 
Worklife Expectancies of Railroad Workers Utilizing Competing Risk 

Theory and the Increment-Decrement Model 
  

 Service New CR Standard Old AAR-Type ID Standard 
Age Years Expectancy Deviation Expectancy Expectancy Deviation 
60 10 4.34 2.97 4.75 4.83 3.36 
60 15 4.44 2.97 4.74 4.83 3.36 
60 20 4.18 2.92 4.41 4.83 3.36 
60 25 4.09 2.65 4.28 4.67 3.09 
60 30 1.35 1.53 1.44 1.27 1.51 
60 35 1.35 1.53 1.44 1.27 1.51 
60 40 1.35 1.53 1.44 1.27 1.51 
65 0 4.39 3.31 7.30 4.03 3.38 
65 5 2.09 2.44 2.63 2.41 2.82 
65 10 2.39 2.68 2.63 2.41 2.82 
65 15 2.46 2.74 2.63 2.41 2.82 
65 20 2.47 2.75 2.62 2.41 2.82 
65 25 2.49 2.73 2.62 2.41 2.82 
65 30 2.09 2.34 2.27 2.09 2.46 
65 35 2.09 2.34 2.27 2.09 2.46 
65 40 2.09 2.34 2.27 2.09 2.46 
65 45 2.09 2.34 2.27 2.09 2.46 
70 0 4.18 3.12 6.84 3.38 2.98 
70 5 2.52 2.52 3.12 3.16 2.97 
70 10 2.85 2.72 3.12 3.16 2.97 
70 15 2.93 2.76 3.12 3.16 2.97 
70 20 2.96 2.78 3.12 3.16 2.97 
70 25 2.98 2.76 3.12 3.16 2.97 
70 30 2.87 2.69 3.12 3.16 2.97 
70 35 2.87 2.69 3.12 3.16 2.97 
70 40 2.87 2.69 3.12 3.16 2.97 
70 45 2.87 2.69 3.12 3.16 2.97 
70 50 2.87 2.69 3.12 3.16 2.97 
75 0 3.75 2.87 6.01 2.39 2.04 
75 5 2.31 2.27 2.83 2.90 2.73 
75 10 2.60 2.44 2.83 2.90 2.73 
75 15 2.66 2.48 2.83 2.90 2.73 
75 20 2.69 2.50 2.83 2.90 2.73 
75 25 2.71 2.49 2.83 2.90 2.73 
75 30 2.61 2.43 2.83 2.90 2.73 
75 35 2.61 2.43 2.83 2.90 2.73 
75 40 2.61 2.43 2.83 2.90 2.73 
75 45 2.61 2.43 2.83 2.90 2.73 
75 50 2.61 2.43 2.83 2.90 2.73 
75 55 2.61 2.43 2.83 2.90 2.73 
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Formulae (12) and (13) induce probability mass functions (pmf’s) on years 
of railroad activity. Here we think of additional years of railroad work CR

x,sYA  as 
a random variable with pmf CR

YAp ( x,s, y) , which denotes the probability that a 
railroad worker age x with s service years will accumulate y additional years of 
railroad service. This pmf at age x and s service years consists of the boundary 
condition and a main recursion in (15). 
 
(15) Boundary Condition: 
 CR

YA 1 x,sp ( x,s,.5 ) 1 p= −  
 Main Recursion: 
 CR

YA y .5 x ,s y .5 x ,sp ( x,s, y) p p y 1.5,2.5, ,ω x .5− += − = − −…  
 
Of course, CR CR

x,s x ,sE(YA ) WLE=  as previously calculated in (14).3 The pmf de-
fined in (15) captures the entire probability distribution of time spent in rail-
road activity and therefore one can compute any measure of central tendency 
(e.g., the mean, median, and mode), measures of dispersion and shape (e.g., 
standard deviation, skewness, and kurtosis), and any probability interval of 
interest. Table 1 shows two such characteristics–the mean and standard devia-
tion of railroad activity based on the age and years of service and subject to 
decrements for mortality, disability, retirement, and other withdrawals. 

When worklife expectancies depend only on (1)
xq ,  ( 2 )

x ,sq ,  and ( 3 )
x ,sq  [i.e., with 

withdrawals ( 4 )
x ,sq excluded from formulae (12)–(14)], we refer to such expectan-

cies as the Old AAR-Type Expectancy.4 These expectancies resemble those 
previously published by the Association of American Railroads which depended 
on mortality, disability and age retirement decrements, but not withdrawals; 
these expectancies also appear in Table 1.  

Our previous Increment-Decrement (ID) model, expanded slightly to allow 
for other than 30-year/age 60 retirements and updated with Twenty Third 
Valuation data produces the last two columns in Table 1, showing the ID Ex-
pectancies (i.e., the means) and standard deviations. In (16) ID

x ,sYA  denotes the 
random variable measuring additional time spent in railroad activity. Transi-
tions from a (active) and i (inactive) occur at the midpoint of any year using 
economy-wide transition probabilities until a railroad worker qualifies for a 
railroad retirement and railroad transition probabilities thereafter (Krueger, 
2004; Skoog and Ciecka, 1998, 2001a, 2001b, 2002, 2004, and 2006).5 The 
boundary conditions and recursions in (16) define the pmf’s. 
                                                      
3Since CR

x,s 1 x ,s 1 x ,s 2 x ,s 2 x ,s 3 x ,sE(YA ) .5(1 p ) 1.5( p p ) 2.5( p p ) ...  = − + − + − +  
ω x 1 x ,s ω x x ,s(ω x .5 )( p p )− − −+ − − − , we have after collecting terms, 

CR CR
x,s 1 x ,s 2 x ,s 3 x ,s ω x 1 x ,s x ,sE(YA ) .5 p p p p WLE− −= + + + + + =…  

4See Skoog and Ciecka (1998 and 2006) for Old AAR-Type expectancies and Markov process 
expectancies for railroad workers based on the Twentieth Actuarial Valuation and Twenty-Second 
Actuarial Valuation, respectively. 
5The Markov calculations in the last two columns of Table 1 utilize data from the Twenty-Third 
Actuarial Valuation for mortality probabilities and retirement probabilities. These results also are 
based on transition probabilities for all males in the U.S. population for ages less than 60 
(Krueger, 2004). Transition probabilities are scaled to the mortality experience of railroad workers, 
and we set active-to-inactive transition probabilities equal to retirement probabilities (adjusted for 
mortality) of railroad workers for ages 60 and above if they have sufficient service credits to retire 
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 Boundary Conditions: 
 ID

YAp ( x,a,0 ) 0=  
 ID a d a i ID

YA x x YAp ( x,a,.5 ) p p p ( x 1,i,0 )= + +   
 ID i d i i ID

YA x x YAp ( x,i,0 ) p p p ( x 1,i,0 )= + + , for x = BA,…,TA – 1  
(16) 
 Main Recursions 
 ID a a ID a i ID

YA x YA x YAp ( x,a, y) p p ( x 1,a, y 1) p p ( x 1,i, y .5 )= + − + + − ,  
 y = 1.5,2.5,3.5,…,TA – x + .5 for x = BA,…,TA – 1 
 
 ID i a ID i i ID

YA x YA x YAp ( x,i, y) p p ( x 1,a, y .5 ) p p ( x 1,i, y)= + − + + ,  
  y = 1,2,3,…,TA – x for x = BA,…,TA – 1  

 
where BA and TA denote beginning age and truncation age, respectively. 

Table 1 illustrates the following theoretical and empirical results:  
 

1. Old AAR-Type expectancies exceed the New CR expectancies. This is 
due to the inclusion of other withdrawals as well as decrements related 
to death, disability, and retirement in the New CR expectancies. 

2. The gap between the Old AAR-Type expectancies and New CR 
expectancies is quite large at young ages, but it narrows with age and 
years of service.  

3. The ID expectancies hover around the values of the Old AAR-Type 
expectancies except at older ages with no railroad service. Within the 
context of the Old AAR-Type model, retirement is not possible for the 
latter group within the railroad (until the accumulation of five years of 
service) and decrements only occur through death or disability. This 
leads to relatively large Old AAR-Type worklife expectancies at older 
ages and no service. 

4. In the competing risks model, standard deviations tend to be large rela-
tive to means at young ages; and, given age, standard deviations de-
cline as service years increase. Standard deviations also tend to become 
large relative to their respective means (i.e., large coefficients of varia-
tion) at ages 60 and above. 

                                                                                                                                       
within railroad pension rules. Active-to-active transition probabilities are thereby also determined. 
For example, consider a 45-year-old with 16 years of service. In 15 years, at age 60, such a person 
will have accumulated approximately an additional 13 years of service, on average; reaching a 
total service accumulation of 29 years but insufficient for railroad retirement at age 60. This per-
son would be eligible for railroad retirement in approximately one year; and, at that point, Table S-
10, "30 & Over" probabilities are used. However, a 45-year-old with 10 years of service will have 
accumulated service of approximately 23 years at age 60; and, at age 62, would still have less than 
30 years of service. This person would qualify for railroad retirement at age 62, but we then use 
the "5-29" years of service column probabilities in Table S-10, noting that this person will never 
accumulate 30 years of service since worklife expectancy for such a person is only 16 years. We 
assume that inactive-to-active transition probabilities are zero once a person qualifies for retire-
ment; this can occur at age 60 at the earliest. However, it may occur later, as indicated in the 
above examples. In the case of a 45-year-old with 10 service years, early retirement can occur at 
age 62 and active-to-active and inactive-to active transition probabilities are the economy-wide 
probabilities for ages 60 and 61; inactive-to active probabilities are zero for age 62 and beyond and 
active-to-inactive probabilities are taken from Table S-10. 
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5. Standard deviations from the competing risks model exceed Markov 
standard deviations at younger ages; the former are more than double 
the latter until approximately age 30. Markov standard deviations are 
slightly bigger than competing risks standard deviations after age 50. 

 
Figures 1-3 and Table 2 reveal important information underlying the New 

CR Expectancies in Table 1. For example, Column (2) of Table 2 contains prob-
abilities that a 20-year-old railroad worker who has no years of service will 
remain in that occupation for the number of years in Column (1). The prob-
abilities are .431, .333, .250, and .035 for 10.5, 20.5, 30.5, and 40.5 years of ad-
ditional railroad activity. The corresponding pmf in Figure 1 shows a mode of 
.5 years and a secondary peak at 40.5 years, and the standard deviation is 
large relative to the mean (the coefficient of variation is 1.03). Column (3) of 
Table 2 and Figure 2 tell a similar story for a 40-year-old, also with no railroad 
service. Figure 3, the pmf for a 40-year-old railroad worker with 15 years of 
service, exhibits much less variation and more symmetry about the mean. The 
probability is .574 of attaining another 15.5 years on the railroad as indicated 
in the last column in Table 2. The likelihood of such a person attaining the 
30/60 retirement requirement is much greater than that of his younger or con-
temporary counterparts who have no previous railroad service. 
 
 
 

PMF for Railroad Workers Age 20 and Zero Service Based on 
23rd Valuation and Four Decrements
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Figure 1. PMF for Railroad Workers Age 20 with Zero Service 

Mean: 15.08      SD: 15.50 
Median: 7.5       CV: 1.03 
Mode: .5 
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PMF for Railroad Workers Age 40 and Zero Service Based on 
23rd Valuation and Four Decrements
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Figure 2. PMF for Railroad Workers Age 40 with Zero Service 

 
 
 

PMF for Railroad Workers Age 40 and 15 Years of Service Based 
on 23rd Valuation and Four Decrements
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Figure 3. PMF for Railroad Workers Age 40 with 15 Years of Service 

Mean: 12.18      SD: 9.81 
Median: 10.5     CV: .81 
Mode: .5 

Mean: 15.13     SD: 6.60 
Median: 18.5    CV: .44 
Mode: 20.5 
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Table 2 
Probability of Future Time in Railroad Activity by Age and Service Years 

 
Probability in Railroad Work for at Least the Number of Years Indicated in Column (1) 

 
Years Age 20, 

Zero Service 
Age 40, 

Zero Service 
Age 40, 

15 Service Years 
(1) (2) (3) (4) 
0.5 0.815 0.849 0.975 
1.5 0.704 0.763 0.952 
2.5 0.644 0.707 0.930 
3.5 0.600 0.663 0.909 
4.5 0.564 0.628 0.886 
5.5 0.534 0.600 0.859 
6.5 0.508 0.576 0.832 
7.5 0.486 0.554 0.806 
8.5 0.466 0.534 0.779 
9.5 0.448 0.515 0.752 

10.5 0.431 0.496 0.725 
11.5 0.416 0.478 0.697 
12.5 0.402 0.459 0.669 
13.5 0.390 0.441 0.641 
14.5 0.380 0.423 0.609 
15.5 0.371 0.403 0.574 
16.5 0.363 0.384 0.538 
17.5 0.356 0.365 0.505 
18.5 0.349 0.345 0.473 
19.5 0.342 0.321 0.300 
20.5 0.333 0.295 0.106 
21.5 0.325 0.245 0.052 
22.5 0.317 0.188 0.028 
23.5 0.310 0.150 0.016 
24.5 0.302 0.102 0.009 
25.5 0.294 0.060 0.005 
26.5 0.286 0.040 0.003 
27.5 0.278 0.028 0.002 
28.5 0.269 0.020 0.001 
29.5 0.260 0.015 0.001 
30.5 0.250 0.010 0.001 
31.5 0.240 0.007 0.000 
32.5 0.230 0.005 0.000 
33.5 0.220 0.004 0.000 
34.5 0.209 0.003 0.000 
35.5 0.197 0.002 0.000 
36.5 0.184 0.001 0.000 
37.5 0.173 0.001 0.000 
38.5 0.162 0.001 0.000 
39.5 0.098 0.000 0.000 
40.5 0.035 0.000 0.000 
41.5 0.017 0.000 0.000 
42.5 0.009 0.000 0.000 
43.5 0.005 0.000 0.000 
44.5 0.003 0.000 0.000 
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IV. Conclusion 
 

Using competing risks or multiple decrement theory, which will be shown 
in future work to be a special case of the Markov model, and proper actuarial 
pension plan data, we can calculate worklife expectancies for time spent in an 
occupation in a region. Some actuarial data (e.g., for railroad workers) enable 
us to calculate occupational worklives regardless of region. These occupational 
worklife expectancies and their underlying pmf’s do not tell us everything 
about a person’s labor force activity, especially at young ages; but they do shed 
light on the reasonableness of assuming that future labor-force time will be in 
only one occupation. The 20-year-old railroad worker considered above has a 
significant expectation of future railroad time–15.08 years; but that is quite 
different from simply assuming that (say) the next 40 years will be in railroad 
activity. Skoog and Ciecka (2001b) show a worklife of 37.28 for initially active 
males (Krueger, 2004, reports 38.00 years), regardless of occupation and edu-
cation; and, as a very rough approximation, we might estimate approximately 
22 or 23 additional years in other occupations.6 Among other variables, per-
sonal injury or wrongful death-related losses depend on duration of loss and a 
level of earnings and benefits. The earnings level and benefits of a 20-year-old 
railroad worker who has no years of service is linked to a worklife of 15.08 
years; and the remainder of labor-force time is tied to the earnings and benefits 
level of non-railroad workers. This may be important if earnings in the railroad 
sector differ significantly from other occupations. In addition to railroad work-
ers, it may be possible to calculate worklife expectancies for other occupations 
from actuarial and pension data. 
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Appendix 
 

In this paper, we consider four sources of decrements and recognize that data may 
come in the form of net rates of decrements, probability decrements, or a mixture of 
both. This appendix contains formulae for the calculation of probabilities given that 
data come in the form of three probability decrements and one net rate, two probability 
decrements and two net rates, one probability decrement and three net rates, and four 
net rates. From symmetry in the superscripts, the problems below each solve a group of 
problems, i.e., there are ( )4

4 1 1C = = 4 problems of type 1, ( )4
4 2 2C = = 6 problems of type 

2 below, ( )4
4 3 3C = = 4 problems of type 3, and ( )4

4 4 4C = = 1 problem of type 4. 
 

Problem 1 (treated in the text): Given ( 2 )
xq , ( 3 )

xq , ( 4 )
xq , and ( 1)

xq′ , determine (1)
xq . 

 
Solution to Problem 1: 
 
(A1) (1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5( q q q )]′= − + + . 
 
Problem 2: Given ( 3 )

xq , ( 4 )
xq , and (1)

xq′ , ( 2 )
xq′ , determine (1)

xq , ( 2 )
xq . 

 
Solution to Problem 2: We use the equations  
 
(A2) (1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + +  
 ( 2 ) ( 2 ) (1) ( 3 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + + . 
 
Solving (A2) for (1)

xq yields 

(A3) 
(1) ( 3 ) ( 4 ) ( 2 )

(1) x x x x
x 2 (1) ( 2 )

x x

q [1 .5(q q )](1 .5q )q
1 (.5 ) q q

′ ′− + −
=

′ ′−
. 

 
To solve for ( 2 )

xq , replace superscript (1) with (2) and replace superscript (2) with (1) in 
(A3). 
 
Problem 3: Given ( 4 )

xq , and ( 1)
xq′ , ( 2 )

xq′ , ( 3 )
xq′ , determine (1)

xq , ( 2 )
xq , ( 3 )

xq . 
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Solution to Problem 3: We use the equations  
 
 (1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + +  
 (A4) ( 2 ) ( 2 ) (1) ( 3 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + +  
 ( 3 ) ( 3 ) (1) ( 2 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + + . 
 
Solving (A4) for (1)

xq yields 
 

 (A5) 
(1) ( 4 ) ( 2 ) ( 3 ) 2 ( 2 ) ( 3 )

(1) x x x x x x
x 2 (1) ( 2 ) (1) ( 3 ) ( 2 ) ( 3 ) 3 (1) ( 2 ) ( 3 )

x x x x x x x x x

q (1 .5q )[1 .5(q q ) .5 q q ]q
1 .5 (q q q q q q ) 2(.5 )q q q

′ ′ ′ ′ ′− − + +
=

′ ′ ′ ′ ′ ′ ′ ′ ′− + + +
. 

 
To solve for ( 2 )

xq , replace superscript (1) with (2) and replace superscript (2) with (1) in 
(A5); and to solve for ( 3 )

xq , replace superscript (1) with (3) and replace superscript (3) 
with (1) in (A5). 
 
Problem 4: Given ( 1)

xq′ , ( 2 )
xq′ , ( 3 )

xq′ , ( 4 )
xq′  determine (1)

xq  ( 2 )
xq , ( 3 )

xq , ( 4 )
xq . 

 
Solution to Problem 4: We use the equations 
 
 (1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + +  
 (A6) ( 2 ) ( 2 ) (1) ( 3 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + +  
 ( 3 ) ( 3 ) (1) ( 2 ) ( 4 )

x x x x xq q [1 .5(q q q )]′= − + +  
 ( 4 ) ( 4 ) (1) ( 2 ) ( 3 )

x x x x xq q [1 .5(q q q )]′= − + + . 
 
Solving (A6) for (1)

xq yields 
 

 (A7a) 

4 3 4(1) ( i ) 2 ( i ) ( j ) 3 ( 2 ) ( 3 ) ( 4 )
x x x x x x x

i 2 i 2 j i(1)
x 3 4 2 3 42 ( i ) ( j ) 3 ( i ) ( j ) ( k ) 4 (1) ( 2 ) ( 3 ) ( 4 )

x x x x x x x x x
i 1 j i i 1 j i k j

q 1 .5 q .5 q q .5 q q q
q

1 .5 q q 2(.5 ) q q q 3(.5 ) q q q q

= = >

= > = > >

⎡ ⎤′ ′ ′ ′ ′ ′ ′− + −∑ ∑ ∑⎢ ⎥
⎣ ⎦=
′ ′ ′ ′ ′ ′ ′ ′ ′− + −∑ ∑ ∑ ∑ ∑

. 

 
To solve for ( 2 )

xq , first write all summation terms in (A7a) term by term. Then replace 
superscript (1) with (2) and replace superscript (2) with (1); to solve for ( 3 )

xq , replace 
superscript (1) with (3) and replace superscript (3) with (1); and to solve for ( 4 )

xq , replace 
superscript (1) with (4) and replace superscript (4) with (1).We observe that (A7a) to 
second order is (1)

xq′
4 ( i )

x
i 2

{1 .5 q }
=

′− ∑  and so to first order is (1)
xq′ . 

Using (9a) and (9b) an exact solution for (A7a) requiring no linearity is given by: 
 
(A7b)

( 1) (1) ( 2 ) ( 3 ) ( 4 ) ( i ) ( j ) ( i ) ( j ) ( k ) (1) ( 2 ) ( 3 ) ( 4 )
x x x x x x x x x x x x x x

i j i j k(1)
x (1) ( 2 ) ( 3 ) ( 4 )

x x x x

ln[1 q ] { q q q q } q q q q q q q q q
q

ln[1 q ] ln[1 q ] ln[1 q ] ln[1 q ]
< < <

⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− + + + − + +∑ ∑⎢ ⎥
⎣ ⎦=

′ ′ ′ ′− + − + − + −
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Substituting 
( 1) 2 (1) 3

( j ) (1) x x
x x

( q ) ( q )ln[1 q ] q
2 3
′ ′

′ ′− = − − − −"   

 
in (A7b) and grouping terms of the same order would permit a comparison of the ap-
proximation. The right hand sides of (A7a) and (A7b) are both (1)

xq′  to first order, using 
the fact that the leading term in the expanded denominator is 

(1) (2) (3) (4){ }x x x xq q q q′ ′ ′ ′+ + + and so cancels with that term in the numerator. It is the second 
order term that would provide a comparison with (A7a). 

An alternative and more rigorous derivation of the key result (A1) above fol-
lows from use of the expansion α 2 2α(α 1)

(1 x ) 1 αx x o( x ), 1 x 1
2 !
−

+ = + + + − < < .  

From (9b), which is exact, with ( τ )
xx q= −  and 

( j )
x
( τ )
x

qα
q

= , there results the equation, when 

j is set to 1, 
 
(A0) ( 1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5(q q q )]′ = + + + .  
 

Since we can invert by ( 2 ) ( 3 ) ( 4 )
x x x( 2 ) ( 3 ) ( 4 )

x x x

1 1 .5( q q q ) o(1)
1 .5( q q q )

= − + + +
+ + +

, substitu-

tion into (A0) produces (9) in the text, which was derived differently, with the aid of a 
“linearity” assumption. This argument proves that (9) is not only correct without reli-
ance on “linearity” but that it is correct to second order. 

In fact, since (A1), (A3), (A5) and (A7a) were based on equalities to second or-
der from (9), they can be no more accurate than to second order, despite their containing 
terms to third and higher orders (spurious precision). Below we drop terms of higher 
order than the second:  
 
(A1) (1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5( q q q )]′= − + + + O (2) 
(A3) ′ ′= − + +( 1) (1) ( 3 ) ( 4 ) ( 2 )

x x x x xq q [1 .5( q q q )] + O (2) 
 (A5) ′ ′ ′= − + +( 1) (1) ( 4 ) ( 2 ) ( 3 )

x x x x xq q [1 .5( q q q )] + O (2) 
 (A7a) ′ ′ ′ ′= − + +( 1) (1) ( 2 ) ( 3 ) ( 4 )

x x x x xq q [1 .5( q q q )] + O (2). 
 
Inspection of the right hand sides of these 4 equations above is striking: we can replace 
any primed symbol with any un-primed symbol in the bracketed right hand side terms 
and still maintain equality, to within second order. What is true for the superscript (1) 
on the left hand side is true for all superscripts (2), (3) and (4). Given any set of primed 
and unprimed quantities, the right hand side of one of these equations will yield any 
unprimed quantity and inversion above permits one to go in the opposite direction. 


