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Arithmetic Means, Geometric Means,
Accumulation Functions, and Present Value Functions

L. Introduction

There are “well known” relations between the arithmetic mean of a random
variable and the geometric mean. Part of this paper is offered with the belief that perhaps
some of these relations are not as well known and transparent as is sometimes assumed.
In addition to asserting several relations, we provide proofs of propositions with the
thought that forensic economists engaged in personal injury and business valuation
litigation will find it useful to have a single and convenient reference for concepts and
propositions involving the arithmetic and geometric mean. This paper also deals with a
proposition and an often-cited example that has been proffered to show that the
arithmetic mean of returns on an investment, when compounded for multiple time
periods, gives the expected value of wealth. We examine this proposition and show
sufficient conditions under which it is correct. Finally, and perhaps of most interest to
forensic economists, this paper examines the expected present value function when
discounting with the arithmetic mean and geometric mean. In this paper, future returns
are viewed as random variables rather than constants, as is usually the case.

Section II of the paper begins with the definitions of the arithmetic and geometric
means, the accumulation of wealth from returns, and the present value of one dollar. Here
we specify a growth-rate random variable and its probability distribution, and we use the
probability distribution to define the arithmetic and geometric means, accumulated
wealth and present value. Next, we give the definitions of estimators of the arithmetic and
geometric means, wealth accumulation, and present value. Then we give definitions using
a particular realization of returns. This section of the paper contains several propositions
stated as remarks which are proved in Appendix A. Section III of the paper considers an
example of wealth accumulation. Section IV deals with the present value function and the
use of the arithmetic mean and geometric mean in discounting. We make concluding
comments in Section V.

II. Arithmetic and Geometric Means, Expected Wealth, and Present Value

Growth Rates from a Known Probability Distribution
Let R be a random variable of growth rates that satisfies the restrictionR > -1.
Assume that R takes on the valuesr,, r, ...,r, with probabilities p,, p,,... p,,. We define

the arithmetic and geometric means as A and G, respectively.'

m
! We could, of course, define A more simply as A = 2 ;% which is equivalent to formula (1). We
i=1
choose to use formula (1) because the terms (1+7,) i=1,2,....,m are nonnegative, and the definition of A
given in formula (1) is more easily comparable to the definition of G in formula (2).
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(2) G=lﬂ)[(1+ri)”"—1

The expected accumulated value of one dollar of wealth after n periods (assuming
realizations of R are independent) is

(3) E(W) = 2 2"'21’;’,]’{2 23 (1+r1i,)(1+ r2i2)'“(1+rni,,) .
y=1 1= i,=1
The expected present value of one dollar to be received in n periods (assuming
realizations of R are independent) is
m m m 1

(4) E(PVF)= 22 2 PP P T ) @)

y=11=1 i,

Remarks 1, 2, 3, and 4 which follow immediately below, deal with A, G, W, and PVF
as they are defined in formulas (1), (2), (3), and (4). These remarks are based on
knowing the exact distribution of returns R, and they are proved in the Appendix A. In
order, the remarks say: the arithmetic mean is the average value of the growth rate
random variable, the geometric mean is equal to or smaller than the arithmetic mean, an
investment growing at the arithmetic mean equals the expected value of accumulated
wealth, and the expected present value of a future amount of one dollar is computed with

the mean’ of the random variable

(1+R)

Remark 1 The arithmetic mean return is the expected value of the random variable R,
ie,A=E[R]=pu,.

Remark 2 The geometric mean is less than or equal to the arithmetic mean, i.e.,
GsA=pu,.

Remark 3 One dollar of initial wealth has an expected value after n periods equal to one
dollar compounded at the arithmetic mean for n periods, i.e., EW) = (1+ ;)" = (1+ A)".

2 Technically, for R discrete, we must assume that there is 0 probability that R= -1, since, if this is not the

case, F (

1+ R ) is not defined. A similar remark would apply to the density of R around -1 in the
+

continuous case.



Remark 4 One dollar of wealth to be received n periods in the future has an expected
present value equal to E(PVF) = ,u("wm» where ,u(':/(m is the expected value of the random

variable

(1+R)’

Growth Rates Drawn from a Random Sample

Since we do not know the exact distribution of R (except perhaps in hypothetical
examples used for illustrative purposes), we consider a random sample R, R,,..., R, taken
at one point in time or over 7 future time periods from the distribution of R. Formulae
(5)-(8) define estimators of the arithmetic mean, geometric mean, wealth accumulation,
and present value from such a random sample taken at one point in time. We also can
think of R,,...,R_ as atime series of future returns which are independent, and
identically distributed, random variables defined over n future time periods. In that case,
formulae (5)-(8) represent estimators of the means of returns corresponding to the
arithmetic mean, geometric mean, wealth accumulation, and present value over time.

©) A= 30+R)-1
n&
1
© G,- []‘1(1+R,-)]" -1
The estimator of the accumulated value of one dollar of wealth after n periods is
M W =[Ja+R).

The estimator of the present value of one dollar of future wealth to be received n periods
in the future is

8) PVF, = H((l +1R)) .

Remarks 5, 6, 7, and 8 (proved in the Appendix A) deal with the estimators of the
arithmetic mean, geometric mean, wealth, and present value as defined in formulas (5),
(6), (7), and (8). In order, these remarks say that the arithmetic mean from a random
sample is an unbiased estimator of the population mean, the expected value of the
geometric mean computed from a random sample equals or is less than the expected
value of the sample arithmetic mean, expected wealth equals an investment growing each
period at the arithmetic mean, and expected present value is computed with the mean of




the

W R) random variable. Remark 9 says that expected present value exceeds the

present value when the arithmetic mean is used in discounting.

Remark 5 The expected value of the estimator of the arithmetic mean is equal to the
(earlier encountered) expected value of the random variable of growth rates R,
ie.,E[A,]= pu, .(This result does not require independence of the R,.)

Remark 6 The expected value of the estimator of the geometric mean is less than or equal
to the expected value of the estimator of the arithmetic mean, i.e.,

E[G,]= E[A,] = uy (The proof shows that this result again does not require
independence of the R..)

Remark 7 One dollar of wealth grows intoW, = H(l + R,) after n periods, and expected

wealth is the initial wealth compounded for n periods at a uniform rate equal to the
expected value of the estimator of the arithmetic mean, i.e., E[W, ] = (1+ 4;)".

Remark 8 One dollar to be received n periods in the future has a present value of

WQsRy

PVF, = H L , and expected present value is E[PVF]= "
++{ (1+R)

Remark 9 The expected present value of one dollar exceeds the present value when the

n

arithmetic mean is used in discounting; i.e., E(PVF,) = ( ] .

1+ p,

Growth Rates from a Specific Observed Realization

Suppose we think of R,,R,,...,R as a specific realization of n values of R, then
the following remarks (proved in the Appendix A) apply without taking expectations.
Remarks 10-14 refer to simple algebraic calculations that are more mathematical than
statistical in nature.

Remark 10 The geometric mean is less than or equal to the arithmetic mean, i.e.,G, s A, .

Remark 11 Since one dollar of wealth grows intoW, = | | (1L+ R,) after n periods, then

actual terminal wealth is the initial wealth compounded for n periods at a uniform rate
equal to the geometric mean, i.e., W, =(1+G,)".



Remark 12 Since the present value of one dollar to be received in n periods is

1
PVF, = —————, then the actual present value may be calculated with the geometric
H (1+R)

mean. i.e., PVF, = 1

1+G))"

Remark 13 If one dollar of initial wealth is compounded for n periods at the uniform
rate A, , then the compounded value is equal to or exceeds actual terminal wealth, i.e.,

(1+A,)" =W, . The equality sign holds if, and only if, R, =R, =...=R .

Remark 14 1f one dollar of future wealth is discounted for n periods at the uniform
rate A, , then the present value is equal to or less than actual present value, i.e.,

1 — s PVF, . The equality sign holds if, and only if, R, =R, =...=R,.
1+4,)

Notice that Remarks 2, 6, and 10 are intuitively consistent with each other in that

G<4 Remark 2,
E[G,]<E[A,] Remark 6,
G, <A Remark 10.

That is, whether the geometric and arithmetic means are viewed in the context of an exact
probability distribution, the expected values of estimators, or simple algebraic
calculations from a particular realization of growth rates, the geometric mean is less than
or equal to the arithmetic mean.

Remarks 3 and 7 also are intuitively consistent in that

EW)=(>0+u,)" =1+ A) Remark 3
E[W 1=Q0+u) =[1+EA)]" Remark 7.

These remarks say that it is the arithmetic mean that leads to the expected level of wealth
when we work with the exact probability distribution of returns or the expected values of
estimators.

Remarks 4 and 8 also are intuitively consistent in that

E(PVF)=y" Remark 4

(1/(1+R))

E[PVF]=u" Remark 8

(1/(1+R))



These remarks say that the mean of the random variable leads to the expected

1+R

present value when we work with the exact probability distribution of returns or the
expected values of estimators.

However, when we deal with a particular realization of returns, that is when

W, =(1+G,)" Remark 11

PVF, = !

1+G,)
The geometric mean gives the actual wealth level and present value, and the arithmetic
mean leads to an over estimate of actual wealth and an underestimate of present value
(see Remark 13 and Remark 14).

Remark 12.

II1. An Example Dealing with Expected Wealth

Roger Ibbotson (2002) has proffered an example to show that the arithmetic
mean, when compounded over multiple periods, results in the expected level of wealth. In
Ibbotson’s example, R is a random variable that takes on only two values: », = .30 and

r, = ~.10; both outcomes occur with equal probability p, = p, =.50. The mean of R is
tp =.5(30) +.5(-.10) = .10 . From definitions (1) and (2), we have

@) A=.51+.30)+.51-.10)—1=.10, and
2) G = (1+.30)°(1-.10)° —-1=.0817.

Ibbotson extends his example to a second period leading to an expected accumulation of
one dollar of initial wealth into

3 W =(5)(.5)(1+.30)(1+.30) + (.5)(.5)(1-.10)(1+.30) +
(.5)(:5)(1+.30)(1-.10) + (:5)(.5)(1-.10)(1-.10) =1.21.

These results are consistent with Remarks 1, 2, and 3 since A = y, =.10,G <A, and
W=(1+u,) =1+.10)> =1.21.

Suppose we change the distribution of returns in period 2 but retain the
distribution used by Ibbotson in period 1. For period 1, the random variable R, takes on

the values r,, =30and r, = —.10 with probabilities p,, = p,, =50. In period 2, let the
random variable R, takes on valuesr,, =40andr,, =10 with probabilities p,, =80 and
D, =20. The arithmetic mean return would be calculated from a generalization of
formula (1), which we write as



@) A='5[ipli(]‘+rli)+ip2i(1+r2i)]—1

= (S)[(5)(1+.30) + (.5)(1-.10) + (.8)(1+.40) + (:2)(1+.10)] - 1 = .220.
Using formula (3), expected wealth after two periods would be

W = (5)(:8)(1+.30)(1+.40) + (.5)(.2)(1+.30)(1+.10) +
(.5)(.8)(1-.10)(1+.40) + (.5)(.2)(1-.10)(1+.10) =1.474.

It is no longer true that one dollar compounded at the rate A equals expected wealth, since
in the foregoing example (1+.220)° =1.488 >1.474.

Ibbotson (2002) says “[t]he arithmetic mean is the rate of return which, when
compounded over multiple periods, gives the mean on the probability distribution of
ending wealth value.” In response to a criticism by Allyn Joyce (1995) that Ibbotson’s
example is flawed because it only contains two periods, Paul Kaplan (1995) shows that
the arithmetic mean return, when compounded for 20 periods yields the correct value of
expected wealth. However, neither Ibbotson nor Kaplan states the conditions under
which his conclusion holds. As delineated in the Appendix A, Remark 3 and Remark 7
are correct if the mean of R is unchanged during all n periods and returns are
independent. >

From Remark 11, we know that it is the geometric mean (when compounded over
multiple time periods) that gives the actual ending wealth value, whereas the arithmetic
mean results in a wealth value in excess of its actual value (Remark 13). For example,
Ibbotson (2007) shows a one dollar investment in large company stocks at the beginning
of 1926 growing in value to $3,077.76 at the end of 2006. The arithmetic mean and
geometric means [from formulae (5) and (6)] are A, =.1234and G, =.1042, respectively.
One dollar invested in 1926 compounded at the geometric mean of 10.42% grows into
the actual observed wealth value of $3,077.76 by the end on 2006. However, one dollar
compounded at the arithmetic mean of 12.34% would have grown into $12,396.18 by the
end of 2006 — an amount approximately four times larger than its actual value. On these
grounds we might ask whether A, =.1234 is seriously deficient as an estimator of the

arithmetic mean. Is A, calculated from a small sample? Is A, corrupted because the
underlying mean return varies over time? Is A adversely affected because returns are
highly correlated? The answer seems to be “no” to every question. Annual returns on
large company stocks are exhibited graphically in Figure 1. A, is calculated from eighty-
one observations — a period covering virtually the entire modern history of the stock
market. In addition, returns seem to be independent; the regression of the return in one

3 There are two other papers dealing with Ibbotson’s example. One paper is by George Cassiere (1996) and
another paper by Joyce (1996) in which he responds to Kaplan. The Cassiere paper discusses a constant
mean and independent returns.



year on the previous year’s return is ﬁmr =.1200 +.0291R,,,, , . The ¢ values are 4.50 and

.26 for the intercept and slope terms, respectively, and R* =.0008, with the correlation
coefficient between returns in adjacent years being approximately the same as the slope
coefficient .0291.* Beyond the visual impression from Figure 1 that the mean is
stationary, the regression of returns on a linear time trend is

Ry, =—3420+.000237(Year), with Year = 1926, ....,2006. There seems to be little time
trend in returns. The ¢ values are -.18 and .25 for the intercept and slope terms,

respectively, R* = .0008, and the correlation coefficient between time and returns is
.0277. However, the varying returns illustrated in Figure 1 guarantee that the strict

inequality (1+ A, )" > W _version of Remark 10 holds when we look at the specific
realization of stock returns from 1926 to 2006.

To emphasize the role of the arithmetic mean in wealth accumulation, we offer
the following example related to stock returns. we use the following facts as discussed
above: the arithmetic mean is A, =.1234, the geometric mean is G, =.1042 for the

period 1926-2006, and one dollar invested in 1926 grew to $3,077.76
=(1+.1042)* = (1+G,)" at the end of 2006. Suppose we make the following assumption:
annual rates of return on an investment will be r, =.18 with probability p, = .80and

r, = — .1030 with probability p, =.20. We further assume that this distribution of returns
is unchanged for the next 81 years and that returns are independent. Then, the expected

returnis A=) p,(1+r)-1= .8(1+.18) + .2(1- .1030) — 1 = .1234, just as the arithmetic

=

mean was in the stock market for 1926-2006. Now, consider the following question.
What is the expected value of a one dollar investment 81 years from now? Remark 3 tells

us the answer: $12,396.18 =(1+.1234)* = (1+ A))* . This answer is illustrated in Table 1

which consists of Columns A, B, C, and D. Column A is the number of times the annual
return is .18 in the next 81 years. Of course, 81 minus the number in Column A is the
number of times the return is —.1030 in the next 81 years. Column B is the probability
associated with Column A. The sum of the probabilities in B is 1.000. Column C
measures the accumulated value of an investment of one dollar, given the entry in
Column A. Column D is the product of Column B and Column C. The sum of Column D

* The estimated intercept very closely approximates the arithmetic mean return, and the small and
statistically insignificant slope term indicates that the return in any year is uncorrelated with the previous

year’s return. Finally, we note that P, =& + P, + &,,, is the random walk model (with drift 9 ) for stock
market prices. This is not quite our independent, and identically distributed random variable assumption of

: n _Dah -
returns with mean ¢ . We assume R, = g+ Vv, , withR,,, = —~—=. Our model implies
t
P, =P+ uP, +Puv, :weneed P, =& and Pv,,, = ¢&,,;. To the extent that these approximate

equalities hold, our independent, and identically distributed, random variable assumption is consistent with
the classic random walk model.



is the expected value of wealth accumulation after 81 years which is $12,396.18 as shown
by the lower right hand corner of Table 1. Complete details are presented in Table 1, but
Remark 3 gives us the short cut answer $12,396.18 =(1+.1234)* = (1+ A)* . Although
the mean of the assumed binomial distribution is 64.8 = (.8)(81) and the median and
mode are 65 up markets, various up and down market realizations could occur. Suppose
67 up markets occur (slightly more than the expected number), Table 1 shows
accumulated wealth of $14,295.15 which exceeds expected wealth of $12, 396.18. Table
1 also shows that 66 or fewer up market realizations imply less than expected wealth.

However, it is the arithmetic mean that gives us the correct expected value calculated in
Table 1.

IV. Expected Present Value Biases Caused By Random Interest Rates, the
Geometric Mean/Arithmetic Mean and Other Estimator Choices

Consider the case where we know that a certain future wage payment, FW, will
occur n periods into the future, and we wish to discount it to present value.® The funding
vehicle earns returns R, for periods i years into the future, i = 1,2,...n. FW_ might be the
result of a union contract which has already been negotiated. Since $1 today will be
worth W =(1+R)(1+R,)---(1+R)) in n years, the present value random variable

() PV(FW,,;RI,RZ,---,RH)=FW' _ FWwW,
W, (+R)1+R))--(1+R)

n

is the object of interest to forensic economists, and we would like a sensible statistical
estimator of this. By estimator we mean that we will need to substitute values for the
variables R, into (8). As written, if the period of time is n years, then the R, are one year

rates, occurring 0,1, ...n-1 years into the future.

Define R™ =((1+R)(1+R,)--(1+R,))" -1as the n-year geometric mean of these
random variables. Its construction entails (1+ R™)" = (1+ R)(1+R,)---(1+ R,), so that in

a sense, R™ is a single sufficient statistic for the entire individual R, . Of course, if one
must estimate returns in not just period n but periods 1, 2, ..., n-1 as well, there is no data
compression saving — n possibly different one period returns are involved. In general the

problem involves estimating a central tendency measure of R™ by some historical
average, using data observed over the last m years.

Forensic economists use a variety of methods to address this problem. We list a
few.

5 The more usual case we would assume that FW_ = (1+G,)(1+G,)---(1+G,) where the G, are
random variables depicting the future growth rates of wages. These are likely not independent over time.

10



The Wall Street Journal (or Bloomberg) Method. Look up the n year yield on a Treasury
strip and call this R(;") . In the general framework, we can think of this method as setting
m=0 years of historical data. Employing the previous result, where the left hand side is

taken as the observed datum,R™ = ((1+ R, }(1+ R,)---(1+R,))"" -1, so that we may use

the fact that (1+R™)" = (1+ R)(1+R,)---(1+R,)in (8) and write
PV(FW,;R Ry, ++,R ) = PV (FW,;R® RO oo R?) = Vo

(1+R™)"
This can only be done when 7 is less than the longest Treasury, 30 years or so. Note that
in effect this method assumes that the 1 year yields will all be equal to a common value,

and that value is today’s observable yield to maturity. Note further that, since R(;") locks

in R”in today, this method avoids any uncertainty in future outcomes R, . Put differently,

letting R indicate the expected value now based on current information of R, , the market

expectations theory of the term structure of interest rates would
yield(1+ R™)" = (1+ R)(1+ RS)---(1+R’).

Historical Average Method. Another approach is selected by forensic economists who do
not see their assignment as constrained by today’s interest rates. If they believe that
today’s rates are historically high or historically low, they may use estimators for

R,,R,,---, R reflecting mean reversion. In particular, estimating R™ by some historical

average over the last m>1 years may capture this idea. Choice of m and choice of average
are at issue. Popular values of m to be inserted into the chosen average include:

(a) 5 years, (b) 10 years, (c) 20 years, (d) 40-60 years, (e) a value of m chosen to
rationalize an a priori rate, e.g. 2% or 3%.

Popular forms of averaging include the GM (geometric mean) and the AM
(arithmetic mean):

GM(R_,R,,...R,) = ((1+ R )1+R,)—(1+R,))" -1

m

AM(R_,R,,...R )= —ER_,. = (32(1”2_,.)) -1
m Ie= =
Although we have not seen anyone propose the harmonic mean HM
m

I:Zm @ +1R-i)

HM(R_,R.,,.,R.,) = -1,

11



it may be a possible average of interest.®

Returning to our original problem, consider

E[PV(FW;R,R,,--,R)]=E v, . If the returns are
(1+R)A+R,))---(1+R)

independent identically distributed over time with mean E(R,) = £, we have

E[PV(FW,,;RI,RZ,W,R")]=FW,,E[ ! )E( 1 )E(

and, since
(1+R) (1+R) )

1
(1+R)
1
(I+R)

f(R)=

is a convex function of R, E 1 > ! , for all i, and
1+R, 1+E(R)

n

1 ) ) (see ReOmark 9). In other words, if we
+ U

E(PV(FW,;R,R,,---,R))>FW, [(1

choose a good estimator for x such as the sample mean AM = AM(R_,R_,,...,R_,) and
FW, FW

insert it into 2 , the resulting - will
1+R)Q+R,)---1+R) QA+ AM)Y(1+AM)---(1+ AM)
tend to underestimate the expected present value.” On the other hand, if we choose an

n

estimator x' of x4 which is downward biased, then F W, ((1 1 _)) will tend to exceed

+

n

FWwW, [ 1 ) and therefore move in the direction of v, . Since
1+ p) (1+R)(A+Ry)---(1+R,)
GM(R_,R,,...R_,)<AM(R_,R,,,...,R ) with probability one in any sample,
E{GM(R_,R,,...,R_)}<E{AM(R_,R,,,...R_ )}, so that one candidate for x'is
GM(R_,R,,,...,R ). In fact, since HM (R ,,R,,...,R_,)<GM(R_,R ,,....R_,), the

harmonic mean is another candidate. Without further assessment, there is no reason to
favor the GM over the HM or vice versa.

Without independence of the R, , the ability to proceed beyond

£ FW,
(1+R)1+R,)--(1+R,))
growth rates and interest rates simultaneously involves consideration of

is lost. Additionally, assessing randomness in the wage

® See Appendix B for a geometrical based proof for the relation between the arithmetic and geometric
means for the case of two numbers. The figure shows the harmonic mean and root mean square as well.

7 Ibbotson (2002) seems to come to a different conclusion; he says “[t]he arithmetic mean ... serves as the
correct rate for ... discounting ... .”

12



and the

E 1+G)A+G,)---(1+G,) _E 1
(1+Rl)(1+R2)---(1+R"))— ((1+NDRl)(1+NDR2)---(1+NDRn) ’

are likely to be non-independent from business cycle reasons affecting the G, ,
1+ NDR,

even if the returns R; are independent.

V. Conclusion

We have defined the arithmetic mean, geometric mean, accumulated wealth, and
present value based on a probability distribution, random sample, and a realization of
returns. We have asserted and proved 14 remarks about these concepts. A few remarks
are of central importance and worth reiterating. Remark 13 referring to a particular
realization of returns, says that a dollar compounded at the arithmetic mean will exceed
(or equal if the returns are all the same) actual terminal wealth. Rather, it is the geometric
mean that will take us from initial wealth to the ending wealth when dealing with a
specific realization of returns (Remark 11). However, Remark 3 (or Remark 7) , referring
to rates known from a probability distribution or a sample, says that a dollar compounded
at the arithmetic mean grows into the expected wealth level of wealth. This paper gives
conditions under which the latter statement holds, viz., rates of return have constant mean
and are independent over time. One might look at things in the following manner. When
we observe a particular realization of some variable over a period of years, the geometric
mean will take us from the initial value of the variable to its terminal value. Such a
calculation is retrospective. The geometric mean takes us from the initial to ending value
of a realization by its very construction; this property is the defining characteristic of the
geometric mean. Since the geometric mean calculated from a realization is retrospective,
it will differ from other realizations of the same variable; and it possesses no particularly
desirable properties for future realizations. However, suppose we want to be prospective,
and we are interested in the future and what is expected to happen after a period of years.
Since many different realizations can occur, we want to say something about the future
that can be evaluated on a probabilistic basis. Suppose we have reasons to believe that
investment returns are random with a constant mean and are independent. Then, the
expected value of the investment is best estimated by compounding forward using the
arithmetic mean (Remark 3 and Remark 7). When we change the focus from wealth
accumulation to present value, discounting with the arithmetic mean leads to a present
value that is too small (Remark 9 and Remark 14). When we observe a particular
realization of some variable over a period of years, the geometric mean will take us from
the terminal value of the variable back to its initial value by Remark 12 — the counterpart
of Remark 11 for wealth accumulation. Since expected present value exceeds present
value computed with the arithmetic mean, use of the geometric mean in the present value
calculation leads to a larger present value calculation and thus moves towards the
expected present value, but it is unclear whether the resulting present value overshoots
the expected present value without further study. Without independence, certain of our
results break down, and the time series dependence should be exploited in forecasting the
returns in the event. This paper has harvested the low fruit in the forest of random returns
and random wage growth rates.

13



Table 1. Expected Value of Wealth Accumulation for 81 Years Assuming Returns and
Probabilities: r, =.18 with p, =.80and r, = — .1030 with p, =.20

B C D A B C D A B C D
2E-57 0.000 4E-61 28 B8E-19 0.324 3E-19 56 0.0066 700.17 4.62
8E-55 0.000 2E-58 29 6E-18 0.426 2E-18 57 0.0116 921.07 10.66
1E-52 0.000 3E-56 30 4E-17 0561 2E-17 58 0.0192 1211.67 23.22
1E-50 0.000 5E-54 31 3E-16 0.738 2E-16 59 0.0299 1593.94 47.63
1E-48 0.000 S5E-52 32 2E-15 0971 2E-15 60 0.0438 2096.82 91.89
6E-47 0.001 4E-50 33 1E-14 1277 1E-14 61 0.0603 2758.36 166.47
3E-45 0.001 2E-48 34 5E-14 1680 9E-14 62 0.0779 3628.61 282.56
1E-43 0.001 1E-46 35 3E-13 2210 6E-13 63 0.0939 477343  448.41
5E-42 0.001 7E-45 36 1E-12 2907 4E-12 64 0.1057 6279.43 663.62
2E-40 0.002 3E-43 37 7E-12 3.824 3E-11 65 0.1106 8260.56 913.27
5E-39 0.002 1E-41 38 3E-t1 5030 2E-10 66 0.1072 10866.74 1165.00
1E-37 0.003 4E-40 39 1E-10 6617 1E-09 67 0.0960 14295.15 1372.44
3E-36 0.004 1E-38 40 6E-10 8.705 5E-09 68 0.0791 18805.21 1486.83
6E-35 0.005 3E-37 41 2E-09 11451 3E-08 69 0.0596 24738.18 1474.03
1E-33 0.007 8E-36 42 9E-09 15.064 1E-07 70 0.0409 3254298 1329.65
2E-32 0.009 2E-34 43 3E-08 19.817 7E-07 71 0.0253 42810.17 1083.98
3E-31 0.012 4E-33 44 1E-07 26.069 3E-06 72 0.0141 56316.61 792.21
5E-30 0.016 8E-32 45 4E-07 34.294 1E-05 73 0.0069 74084.28 513.94
8E-29 0.021 2E-30 46 1E-06 45.114 6E-05 74 0.0030 97457.58 292.36
1E-27 0.027 3E-29 47 4E-06 59.347 2E-04 75 0.0011 128205.07 143.58

aa;“aa;a;ja‘mmﬂmmpwm—no>

20 1E-26 0.036 5E-28 48 1E-05 78.071 B8E-04 76 0.0004 168653.27 59.65
21 1E-25 0.048 7E-27 49 3E-05 102.701 3E-03 77 0.0001 221862.72 20.38
22 2E-24 0.063 1E-25 50 7E-05 135.103 1E-02 78 1.90E-05 291859.54 5.50
23 2E-23 0.082 1E-24 51 2E-04 177.728 3E-02 79 2.90E-06 383940.09 1.10
24 2E-22 0.108 2E-23 52 4E-04 233.800 9E-02 80 2.90E-07 505071.69 0.14
25 1E-21 0.142 2E-22 53 9E-04 307.563 3E-01 81 1.40E-08 664419.84 0.01
26 1E-20 0.187 2E-21 54 0.0018 404.6 0.7322

27 1E-19 0.246 2E-20 55 0.0036 532.25 1.8913 1 12396.18
Source:

Column A shows the number of times the annual return is .18 in the next 81 years.
Column B contains the probability associated with Column A. Using x to denote the

81! 81—
————(.8%)(.2"""). Some
x!(81—x)!( X )

entries are in scientific notation where, for example, 3E-31 means 3.0 x 107,
Column C measures the accumulated value of an investment of one dollar, given the
entry in Column A. Each entry in Column C is(1 +.18)*(1-.1030)*"*.
Column D is Column B x Column C.

number in Column A, then the entry in Column B is

14



Figure 1. Total Returns on Large Company Stocks 1926-2006
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Appendix A: Proofs of Remarks

Proof of Remark 1
A= ipi(l+ r)-1
-Sp+ ipir,- -1
= 11 Hp —11-
= pty = EIR]
Proof of Remark 2

G<AIfG+1< 4+1,ie.,if

i=1

]ﬂ[(l+n~)”" SSpi(l+n)

We know that

log[f] (L+n)? ] = S pilog(1+7)

= Eflog(1+ R)]
<logE[1+R] (See Note at end of proof.)

slogzpi(lw,-)-

Since log[l—)[ A+r)” ] <log 2 p;(1+r,) and since the log function is increasing, then

=1
1+r)" = > p(1+r).
[Jomr =
Note: This step is valid by Jensen’s Inequality since the log function is concave.

Proof of Remark 3

m m

E(W)=22'“2pilp5"'pi,,(1+'iil)(l"'rziz)"'(l"'rni,,)
a=lp=1 =

= P )Y P, A )Y p ()

h= L= L=l

16



=+ pp )+ pg)(1+ pg)
=(1+,UR)”

Proof of Remark 4
m m m 1
E(PVF)=2 Dp.D. D
lzz E e ’ (1+rlil)(1+r2i2)‘“(1+rni")

1 i,=1

Zp'*(u )h_ (1+ ,E_IP' (1+

=F 1 E 1 E 1
@) T A n) | LAy

= HaqsryHuasry " Haasry)

n
(1/(1+RY)

= H
Proof of Remark 5
E[An]=EFz(1+Ri)—1}
n4s
1 n
=—2E(1+Rt.)—1
n4s
1 n
="2(1+/‘R)_1
n4=
1
=—(n+nup)-1
n

= 4tz = E[R]

Observation and Lemma for Remark 6

Before proving the next remark, we need an observation and a lemma. The
observation is that defining x, =1+ R, with R, = -1says that results known about

functions defined on x; = 0 permits us to make statements involving wealth accumulation

factors 1+R,.

1
Lemma. f(x,,%,,~*X,)=[xx,---x,] is a concave function of its arguments.

17



Proof. Since f(x,,x,, :-x,) is clearly twice continuously differentiable, it is necessary

2
and sufficient to show that its second derivative matrix or Hessian H = [8 af ] is
X, 0X .
i J

negative semi-definite, i.e. for every n-vector v,v' Hv < 0. We compute first

f 1 —ier o f , , L
——=—x x"=x Pt Computing H, off the diagonal, for i # j,

ax, n 5

2

2 1_ 1 1
I f - _];x.n llxjn lnxz = f while on the diagonal

axox;, n ' n nxx,
kw§
*f 11 oy 11 f 1 f 1°f
=—(—=Dx" Xt=—(—-)=5="5—5-— —— .Thus
ax” n(n % H g n(n )xi2 n x® nxx
1
X
= idg <i2> + lz— : (i —1—) , where in the first term dg means a diagonal
n x [ n X x,
1
xn
matrix with the indicated element on the diagonal. The computation proceeds with
i=n 2 imn 2
VHy -1 v—‘2 + -Lz ( 2 v—’) . Multiply by n and divide by f and note thatv' Hv < 0 if
né&x, n\&x

i=n 2 en 2
and only if l( 2 v—') < 2 &2— But the Cauchy inequality says
n\ & x “f x;

1

(Eaibi)2 s(Eaf)(be); take a, =&and b, = \/1_50 ab, = x\/—
(2 ab.)’ =%(2 i"—)zand Ea 2 o Zb 2 =1so0 the result follows.
Proof of Remark 6

E[G,]=E [["1(1+R,.)T -1

1
-E l—l[(1+R,.)" -1

18



- 1
< HE(I +R)" |-1  (See Note at end of proof.)

= -]'L)[(l'*'ﬂk)% -1
Ll-

n

-1

B 1
< |+ )"
L

s1+p,-1
S/uR =E[An]

n 1
Note: This step is valid by Jensen’s Inequality since H(l + R;)" is a concave function by

the lemma. In fact, from Remark 10 below, since for any realization s with probability

p(s), G,(s)s A (s), multiplying by p(s) and summing produces the result without any
appeal to independence.

Proof of Remark 7
E[W,] =E[1_)[(1+R,.)}
= [1_)[ EQ+ R,.)] by independence of a random sample
- [H U+ )]
= (1 + Uy )'l
Proof of Remark 8

HE ! by independence of a random sample
L1 a+R)

[H #(\/(IHI)) ]

=/j"

(1 (1+R))
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Proof of Remark 9

E[PVF]=E

(o)
()

[
Z_]z:;[ 1+E]:(Ri)]
a1
TH 1+uR)

n

=(1+1uR)

Note: fis convex since f"(R)=2(1+R)> >0

by independence of a random sample

by Jensen’s Inequality since f(R;)= is convex

1+ R

13

Proof of Remark 10

The proofs of Remark 2 and Remark 5 involve random variables. Here we assume
that R,R,,...,R, are real numbers greater than or equal to —1. First, we note that

A, z2G,if A, +12G, +1. Then, from Jensen’s Inequality and the fact the natural log
function is concave,

1n(2(1+Ri)/n) z(l/n)iln(l+R,.) =ln[]i[(1+R,.))

Since the natural log function is an increasing function,

(2(1+R,.)/n)z(lll(l+Ri))

A +12G, +1

Un

1n

4,6,
G, <A,
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There are many ways to prove the arithmetic-geometric mean inequality, among
the most storied inequalities of all mathematics. The simplest proof from first principles

a+by\ a-b 2 a+by\
notes that ab=( 5 ) —( 5 ) <( 5 )unless a=b, in which case we have

equality. If a and b are positive, we have the result for n=2. Now repeating this with

2 2 2
cdd= (C ;d ) - ( < ;d ) < (C ;d ) and multiplying gives

2
application of the n=2 case. This proves the result for n=4. Proceeding upwards in powers
of 2, the result follows for all n =2". The intermediate values of n which are not powers
of 2 may be filled in by using the result above for the higher n and adeptly choosing an

arithmetic mean to extend the desired sequence in n to the next higher power of 2 — see
Hardy, Littlewood and Polya (1934), p. 17.

a+b\’(c+d\ (a+b+c+d\’ .
abcd < 5 < 2 where the last equality follows from another

Proof of Remark 11

From definition (6), we have

G, =[li[(1+R,.)T _1.

n

G,'+1=[l’)[(1+R,.)1

G, +1)" =[ Ta+Rr)|

R

G, +1)" =W,
Proof of Remark 12

In the last line of Remark 11, replace W, with 1, then the present value of 1 is

PVF, = 1.
1+G)"
Proof of Remark 13

By combining Remarks 10 and 11, we have(1+A,)" =W,

Proof of Remark 14
< PVF.

By combining Remarks 10 and 12, we have ~
(1+A4,)
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Appendix B

A
G
RMS
I'4
HM
N
AM—>
Y
GM
A/H
0 B
[ I
a b

Source: http://www.artofproblemsolving.com/Wiki/index.php/RMS-AM-GM-HM

The picture illustrates the following six-part inequality for n = 2 numbers:

max (x,,%,, %, ) = RMS =[(x] +x; ++--x2)/n]’ 2AM = (x, +x, +--'x,)/ n
1
>GM =(xx,--x,)n 2HM =n/(x]' +x;' +--+x,') 2 min(x,,x,,-x,)

with equality if and only if the x, are all equal. The picture shows two x, values,
x, =aandx, =b . In the picture, the arithmetic mean AM is the distance OA, the

geometric mean GM is the distance BG, the harmonic mean HM is the distance HG, and
the root-mean square RMS is the distance BA. Extreme values are the maximum value a
and the minimum value b. The arithmetic mean is AM=(a+b)/2=2(04)/2=0A.To

find the geometric mean, we observe that (OB)’ =[((a+b)/2)-b] =[(a—b)/2]*. Also,
(GB)? = (0G)* - (OB)* =[(a+b) /2 ~[(a—b) /2] = ab = GM? . Therefore, GB = GM.
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