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LOCAL ASYMPTOTIC SPECIFICATION ERROR ANALYSTS

By NicHoLas M. Kierer ANDp GARY R. SK00G*

An appreximaton to the imconsistency introduced by imposing an incorrect restriction

on a parametric model is given. The approximation can be applied to estimators senerated

by opumizing any objective function satisfving certain regularity conditons. Examples

mven include analysis of misspecification in diserete choice and Ume-series models esti-

mared by maximum likelihood. and in a nonlinear regression maodal.
SPECIFICATION ERROR ANALYSIS in the linear regression model has been studied
by Theil [1], who gives formulas for., e.g.. the effect of leaving out relevant
variables on the expected values of the estimators of the coefficients of the
included variables. In this paper we suggest analogous formulas for estimators
obtained by optimizing an objective function subject to restrictions. We have in
mind maximizing (1/#) X loglikelihood and will usually use this terminology. We
consider the effect on the limit of the restricted estimator of a small violation of
the restrictions. In the linear regression case our formula coincides with that
given by Theil,

In order to keep our results widely applicable and to avoid a mass of
unnecessary detail we make assumptions on the asymptotic behavior of the
loglikelthood funcuon itself, rather than on the data-generating process per se.
Many alternative sets of assumptions on the data densities can lead to the
behavior we require of the loglikelihood functions. These will not be pursued
here. The interested reader is referred to, e.g., White [12] for the case of
independent observations and Kohn [8] for the time-series case.

1. GENERAL FORMULAS

The general approach we take 15 based on a linear approximation to the
likelihood function at the maximum likelibood estimator. It is in this sense that
our analysis is local. For some models the iocal and global specification error
results coincide; a well known case is the effect of omitted regressors in the linear
regression model. Essentially the only cases involve linearity, although often
there is agreement regarding the signs of the inconsistency, We show below that
the local and glebal results even fail to coincide in the case of misspecified AR
processes. Generally however, the global results are unknown.?

Taylor expansions are tyvpically used together with assumptions on the data
generating process to obtain the asymptotic distribution of the maximum likeli-
hood estimator (Cramer [3]). In this paper we will not concern ourselves
with asymptotic distributions of +» -normed MLE’s since these have been worked

"We ure indebied to the referees for helpful comments. This research was partly supported by the
National Science Foundarion.

*Precisely, the relationship between the parameters of the misspecified and the correct medel is
not known. It can be shown that the almost sure limits of purameter estimates of the misspecified
model are given so as to minimize the Kullback—Leibler information loss relative to the wue model.
See White [12].
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874 N. M. KIEFER AND G. R, SKOOG

oul {under regularity conditions which imply ours) for both correctly and
incorrectly specified modcls (see While [12] and references listed therc). Tnsteacl,
we concenlraic on obtaining an approximation o the effect ol nusspecificalion
on the limils of the parameter estimales.

Let @ be the parameler vector being estimaled, and denote the (ruc value §°.
We consider the lincar restrictions R — r = 0. These may be thought of as lincar
approximalions to nonlincar restrictions. Estimates t are oblained by maximiz-
ing the objective function /., (#). It 1s natural (o :::r of £,(#) as the normed
loglikelihood function, but our results of course apply to methods based on any
crilerion function satisfying our assumplions, in pariicular o many least squarces
and M-estimators.

Agsumrrion Al: The parameter space ® is u compact subsct of R K, and 8"
inierior to 6.

ASSUMPTION A2: The G % K maltrix of restriciions R has full row rank and the
true valuc 8" satislies REY — r= ¢

ASSUMPTION A3: Assumplions on the objective funclion are: {a) 7.,{#) has
continuous sccond derivatives for # & 6. (b) There cxist nonstochaslic functions
L(#), D), and [1{#) such that

1,(8) > L{#),

dL, (")

—p > D),
020.,(8)

“gag M),

almost surcely uniformly for & in ©. {¢) Tdentlication: L% = L ?: all
fe6, 00"

These assumptions insure that D(#) and H{#) are the K X 1 vector of first
derivatives and K % K matrix of sccond derivalives of L(#), respectively, and
that H(#)} is negative definile m a neighborhood of §". Definc the constrained
maximum likelihood estimator

a

=argmax { L, (#)}

i = e*

where G = (# = ®| R = r}. Kohn [9, | m_: ma 2] shows in 2 more general
lramework thal Q — #° almost surcly when ¢ = 0, i.e, when the constraints arc
satisfied by the :ﬁr parameler values, and that lim L Q:v 1.(8") almost surely
when the constraints are not satisficd by the true parameler value. White [12]
gives conditions under which m: will converge o a limit when the constraints are
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not szlislicd by the trne value; the primary additional assumption is that of the
existence of a unique constrained maximum. We assume the following,

AsSUMPTION Ad: L{#) has & unique maxnnizer §*(e) in the sel & lorall ¢ o a
neighborheod of ¢!

Given Assumptions Al A4, a standard argument, lollowing Jennrich [7,
Theorem 6] shows Lhal a.,z » #%(¢%) almost surely. White also provides an inter-
pretation of the limiling parameter vector wnder misspecification as well as o test
statislic for misspecilication. We do not pursue (ns approach, and ask instead
the [ollowing question: Suppose ¢” is simall, so the constrainis R = r almost hold
at the true parameler value. Can we oblain a uscful approximation to (™
#". i an estimale of the effect of a hypothesized misspecification?

This yuestion can be answered using conventional comparalive stalics lech-
nigques. Define the inconsistency function Bty = 8%y 0% Note that B(0)
=0. We propose A= 38{0)" /3¢ for small ¢ as a measure of local inconsis-
ten

. To estimate this quantity we consider the maximization problem

max L () sulpect to RE—r =1+
e

and the necess:

y eondilions

RO r— =0,
DY+ RA=10,

int RE#E—r— .
ry conditions gives the functions #{e) and A(e) (dependence
on #% is supressed for notational convenience). Our inconsistency [unction ()
ion of the

where A iy the lagrange multiplier associated with the const
Solving the necc

can be writlen #H{M-#{c). Standard manipulations (total differ enti
nceessary condition and substitution) lead o

IB()
Lﬁ

A=

H 'R(RIL'RY

for small ¢ where the function FA(#) is evaluated at #(0). The consistent estimale
e. can he substituted for Ecv 10 es :E;c A consistently, due to the uniform
:::_:EQ and definiteness ol the funciion £1.

1 15 uselul to consider an ::_,51 nt special case in order to fix ideas. Partition
#into §, and @,, K, X L and K, X L let R=[0 J|where O is a K, X K| matrx of
zeros and [ is the &, idenlity ::__,:._.x., and set 7 = 0. The restriction c::v_ES_m&
thus #,=0. We wish (o consider the effects of a polential violation of (his
restriction. We consider violations of the form 8, = ¢, imdicating the dircclion in
which we suspect the res

ion may faill. Partiioming

i H . " pr1l 12
H = 1 12 ot= H i

i, Hy NI
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it is clear thal A,, the inconsistency associated with imposing the consiraint
, =0, is simply - ¢. Applying our general formula yiclds

A= - H _N:u.mJ ._m._ =Hj e

‘This is a generalization of the Theil specification analysis result for the effect of
leaving oul regressors in (he lmear model, Clearly, our local resull is global when
1F does not depend on unknown parameters, as in the linear model. We expect
{hat the usetulness of (he estimate A in analyzing misspe fication will depend in
general on the variability of A with respect to # and on the size of ¢

3. MISSPLCTIICATION TN PROBIT-LOGET ANL OTHLER DISCRE VL MODEI

AL Left-oul Variahies

A number of models For analysis of discrete data are based on an wnderlying
latent variable

= ot oe.

only the sign of which is ohserved. As an cxample y; might be the difference
between an individual’s wage and his reservation wage, but the only data
available may be whether he 18 cmployed or uol. More gencrally p, is Lhe
ditfercnee in utility belween (wo choices, and observations are made on choices.
‘Ihe random variable € has distribution [unction /7 -) 0 that Lhe probability thal
y; 1s greater than zero is [ = iR s letd =00fy, <0, d=T1ly,
d=1 d and bF.=1— F.. Then the normed loglikelihood [unction is

n

LABY= H_w. M dln b+ _ S dluF,
|

M

=1 =
and
91 " 0n F, 7o_ Vln F
Dl Loy M D S d S s L XAX
S-S e B TEY S TN n

with A diagonal with ith clement

In F, . 0n F,
A= d— +d, —
A(B Y

i

and X the x; stacked up.

A more detailed and general treatment of the resulls of this section and closcly related resy

given by Yatchew and G
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Partiion X inio | X, X,] and £ correspondingly inlo
B
B

Suppose X, is omitted from the model, i.c., 5, s constrained o be zero. Then A,
- - 2 - - -
the local inconsistency in 3, is given by .

&y = :_ﬂ_:_..f&m._
which is consistently estimated by
A = (xiAx) "X{Ax, B

with 85 the truc value of ;. These formulas are analogous 1o Lhe corresponding
result in lincar regression; the estenl of lhe inconsistency depends on the
correlation between X | and X, and on the value of £5. In many cases it will be
possible 10 take expectations and o use A rather than .w_“ whether this will lead
to a belter measure of inconsislency is an open question.

B. Heteroscedusticity

Heteroscedasticily in logit and probit models, and discrete models generally.
can lead to inconsistenl parameter eslimates if ignored. Thig result is in contrast
with results in the lincar model, in which ignoring heteroscedasticily does not
introduce inconsisteney. ITn this section we consider a simple forn of heterosce-
dasticily in a probit model and show that its effects on the parameter estimate
may not be oo serious according o local misspecification analysis.

Suppose the latent variables y ., and py; are distributed as

Yo~ N{x, %0}

N P
L\M,.}.\.ZA.@:@ ,05);
where N{ i, 67} denotes a normal distribution with mean g and varance o> Let

100 X
¥ = Y and x =7
: Y2 X,

As usual, suppose only the signs of the clements of y are obscrved and we wish to
estimate coellicients of x by probil.

We wish to evaluate 4, the inconsisiency of the MLIL when beleroscedaslicily
is ignored. IMere there are two possible normalizations: (1) #, = */ @, and (2)
B, = B*/0,. Consider the Tirst normalization, so regard the MLE as an estimator
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for By We can write

Pr( 0y = @{x, By

Vi

Cvul.;_v\f,.ﬁ_._.xw. L h| B
_

Pri y,:
(3 .

The problem is now in the lefl-out regressor fornu we resirict @, = o, thus
ieaving the sceond x, term out of the model. Here

X, 0

X = '
F=lyv il ef Lt L
2] )

and we restrict

pef 1

Ty Ty
o zera, Now,

Y'AX = X TAX, + XA X X3AA,
h XiAX, X3AX,
and il the x, arc cach assumed to be genc sted from the same process, and if
there are equal numbers of observations [rom models | and 2, then it is a
reasonable approximation (o sel X{AXN, = X A X, Then
VN - 1 1 ]
A, = wtbiu vaxg L L= - )

T 2\ 0,

Here A, is the local inconsistency of _‘\M as an cstimaior of f3,.

Under normalization 2 we are trying to estimate the parameler f2, = 3¢/ a,.
Using the symmetry ol the problem, we nole that the local inconststency in m 1y
an eslimate ol A, is

a=d{ - Uype

1
2 i Lo

Therclore when a, > 04, 3 < £ f,. and when g, e, then fi, B B
Consequently, the effect of the heteroscedasticily does not aller our ability 1o
estimate the parameters up (o a scale Jactor. Vor purposcs of prediciion,

i 1 .
. oL =
20, 2a, /

lics between ®(xf3,) and PCefs).
Note that the analysis of the effect of heleroscedasticily did not require that
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the sample separation be known. Of course 1t would be usctful but net neces
to know the sample scparation in order to correct for the heteroscedasticity.

3 UNIVARIATLE TTML SERIES SPECHACATION ANALYSES

To motivate the general result below, we consider the second order stationary
AVLOICEressive process

e} ‘ \
X, =X, Tyx, ot

When we il a firsi order autoregression o data generated by this process by
maximum likelihood (or any other asymptotically equivalent method) the result-
ing constrained cstimaic of ¢, ¢y, will be chosen so as o minimze >{x,

¢,x, )" Now the almost sure fimit of X /X HAw_ﬂ_ 15 p(l), the lirst
autocorrelation coclficient of the x, process, which standard caleulations (Box
and Jenkins |2, 3.2.27, p. 607) show Lo be ¢, /(T - ¢,) This is @ global inconsis-
tency resull, unlike the resulis of previous sections apd some results to follow. 11
is Lhe nature of these time series models that the effects of misspecification may
he characterized as the resull of variational problems; the musspecilied model
and inconsistencics depend only upon the theorctical parameters of the true
model (and the (p, ¢) choice for misspecilied model). Of course closed form
expressions for these ws. limits will become unwieldly, and atiention may shift o
the analysis of another essentially global quantity, om.c, the forccasting crror

variance altaned when the misspecified model is used to forecast one period
ahead.? )

It is of interest generally Lo compare our fvcal _:oo:.z_ic:nu__ measive, for any
case with the global inconsistency measure, whenever the latter 18 available. In
the notation of Section 1, # = (¢, Py, a7) and

I > 1

1 ..
L(0)y=— 5 log 27 - 7 logo™ — 5

conditional on x, and x . Thus

D0y =

it s BT

1n Skoog [10]. misspevilications, the guanlity o jed to detenming when the

s will be henign if the end is forecasting aconracy and nol parameier
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and

"o 9.,
A9V = 5y

2 >
M Mo M Ko 1 ¥—n

_ _ M (.hmlm

syminelric

Using D{#% = 0 and expressions for the autocovariance lunction of an AR(Z)
process,

m?_: N B va

A=) 1 I 0
{(TH+d)\ (1—9y) o)) (1 + eb—: ds) — eJ
- b (1= ) 1 0
: + @wmw_HA_ - %MVM — A_.?_»H_ 1+ P m_ -- %mv.,. A___v_m )
0 0 1
MAQJ\

Because of the block of zeros there is no need to concentrate the likelihood with
respect Lo a2, and H[ ' ,é, becomes ¢ ¢ /{1 - ;) with Timiting slope ¢, as ¢,
goes Lo zero. ‘The global inconsistency was

o &
I — gy
differing from the lecal result. Thus the global inconsistency function
JB(0)
mﬁ_:m 4

-
B{d,) = lw . and

ts the limiting slepe. Nolc that our local measure correctly signs the inconsistency
throughout the paramcier space consisient with stationarity as sign (¢,¢, /(1 —
¢,)) agrees with the sign (¢¢,) since | -~ ¢, = 0. General theory only guaranteed
apreement in a neighborhood of ¢, = 0.

We may now exploit similarity between MA and AR £/ matrices. We see
immicdately that, onntting 8, in cstimating the MA(2) process 7, = u,  Ou,_ | —
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SR

#.u, - will result in the local slope 8 since the /7 matrix of (0, 0,) is of the same
form as that tor (¢,.¢,) (Box=Jenkins [2, p. 283]). Unlike the AR case, lim#y,
while characlerizable as the solution of a variaional problem, does nol appear
amenable to a closed form solution.

T'e complete the analyses of the parsimonious ARMA models, we record the
results of misspecilying an ARMA (1. 1) as an AR{1) and an MA(1) respeclively.
Using the expression on page 284 in Box Jenkins, we find the H matrix of (¢, #)
and obtain the local inconsistencies as (1 ¢M8 and —(1 — #%)¢. In lact,
using the result that

:ltut ¢ _ov
E:H|.._ MX..|,
T+ 82 290

the glokal inconsistency in the lormer case is p{l) — ¢, or —(I — D8 /(L +
07y — 2¢#). This will always agree in sign with the local mconsistency, since
stationarily and the innovations representation of the ARMA process (¢
16] < 1)y imply 1+ 8% —2¢f =0, and ! — ¢ ),

‘T'o gencralize these resulls we need o establish some notation, Tor a eovari-
ance stalionary process x, with mean 0, p, = (£xx, O/ Ex]. Py p—y will denote
the X p Toeplitz. matrix whose elements on the & sub- or super-diagonal arve all

cqual to p, . The subscripts indicate that the [irst row is (pg.py, - -« o, o) Nexd
we define the vectors o), = (ppa, -5 ) 1, = Dt 5 D) Dpiip
= {Dpgrts - - Pphe g, T @, ..., A_Jm_u and the lag operators o(Ly=1—
$l.— - b L0 and iy L)y=1— G — A___VM_.._C;_. When (L)x, = u,, u,

- . - el ' - .
Li.d. with mean 0. variance o7, and the vector ¢ 18 characterized by the
Yule: Walker cquations:

%c% 1Py =Py

which, in more delail, appears o8

|_
1 - _n_..__r_c - :__:: L _:__: | r - _
p | Rl £
|
- . @Jc: _CE.._
b__..vo. - 1 Ay _:__:. M =
n»_u_ﬁ: i1 .C__.:_nv |
t__cc T ] l T .:n P :
- i )
N A_r_.____ __m_ ' a
T.__: 1 .:__I___:_ _:__e o 1 l .
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or, more compactly, as

~~|..n__,_ﬂ__:.. 1

!

]
Fod— | alv._:,:: _

¢ ¥ -
b..Uh:% ! / Uy -py ﬁ_c:+ Ly B oot lp

When (he covariance stationary x, does not follow a pyth order autoregression,

but such an xz_ﬁ.,.:ow is fiL o the data, the Yule Walker cquations tell us the

o 08 fit by ML will be ...cp,:_. T This is because ML and

OLS are asymplotically cquivalent, and the OLS estimator will be xf,_ A

where a matrix or vector with sample autocorrelations replacing population

autocorrelations is indicated by replacing £ by R. Since the F(K) are strongly
consistent for p, {(Hannan and ITeyde [S]), the result follows,

We may now give a general result concerning the global and local inconsis-
tency in filling an AR(p) by an AR{p), po = p- The Tact that the O1.S estimalors
are nol linear in the data is cnough to ensure that the global and local
inconsistency measures differ. Note that, following time-scries conventions, py is

almost sure limit of ¢,

the misspecified arder and p the true order.

TreoriM: When the misspecified model Pll)x, = :w is fit fo the AR(p)
process (LY, = u, the glohal bus in the coefficients of ¢, 18 3_..?__ ! :
while the local bias is the same quaniily with the first 1wo terms evaluated ol
(TP T LA 0.

Prook: Writing out the [irst p, cquations from the compact representation
above yields Py, P 1 @pa1 TPy I'he previous discussion also
showed that the equation Py, _eﬂ}, =Py characlerizes the almost sure limit of
the estimator e.._,,? which results when OLS is vsed in fitting the AR(p). therehy

P ¢ Sublracling the sccond equation from the lirst
shows the global inconsistency cqual 1o 7, - = Pou- 1P o

omillig x,_ s X
i ] ) Lagrey , 1. ; P p Wpatlpe 1_”_3
obtain the local inconsistency., concentrating ¢” from the loglikelihood resulis in
R R . I .
oor Laking sccond derivatives of S(x, — dyx, | — 00 TN ) wilh respecl to

(@), ...,0,) to form H (#). Thus H, = Ry, When Ry, is partitioned appro-

priately and the general formula E_H_:Eﬁu uscd, the previous lormula

—1 eilte e —1 Y e e
Lo - 1Py 1ot Ly results, since (H,,)7 = Py, and =0, 0y almost
surely. OR D

It is useful to compare this result with the usual fixed regressor case in which
(he variates X, are omitted in the regression p = A, f; + X, 8, + 1. The bias in
A, is (X7X)) 'X{X, 8,1 o analyze the bias. information is most likely available
on f,, but problematic regarding (X7X)) 'X1X,. In the time scries case, ¢
the analog of A, is most likely to be dilheult Lo a cerlain, whereas wcm,_| i

3
- - - . . - 3 - 3 - .___wQ.__-wl_
is an easily computable Tunction ol readily available information, the sample

autocorrelations.
As regards the general problem of mi specifying an ARMA(p,4) by an
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ARMA {4 q). we could formally apply our general tormula F 71,09 w0
appropriately partitioned submalrices of the informaiion matrix of the correct
modecl. While the formulac on p. 283 of Box—Jenkins relaic such an information
mutrix to an associaied AR(p + ¢) process, 1l seems we arc untikely to be
successtul in deducing qualitative information on any but the parsimonions
wodels analyzed earlier,

4. MISSPUCTFICATION IN NONLINEAR REGRLUSSTONS

The analysis of misspecification in nonlimear regression models 1s straight{or-
ward und has wide applicability.” Write the model

Y=g(x,. -, X 0.0, + €

with ¥, g(-).and x(, . . ., x, all 2 X I and suppose is normally distributed with
mean zero and variance o’/

"

Herc
H(6y= 1o GG
with
L ag o, (0
Aﬂ - ®|®. 1 .e- - QN

The local inconsistency 1 .ﬁ from selling m.,w caual to zero is
Ay = 11705
As an example, consider the model
p=xp ey tu,
u,=pi, |+ €,
with the ¢ normally distributed with mean 7ero and variance ¢° and indepen-
dent. Fransforming gives

Y= k?&. T ____w + Tv., + _C.v..v.m L LS + €.

We will find the almost swre limitl of
- o

&, = .m

when tw = p is constrained to zero (with the “truc” p equal o 9. Tn this case, it
sulfices Lo calculale H under (he constraint. We have (at p= 0} [or the fth row

FRegudarity conditious for nondinear rege ions are given by Jeno 7.
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of &,

QRHTFI_ T MC¢ T X B :\SINL‘

Drop the first two observations and let

X3 Y2
X=|": and Y ;=|

X, V

,
" P I

Then, almost surely

i Yo, Y X

- o’H, = lim+ vy P
H
-1

1

) M YoV —x, B oy, _s)
—¢’H,=lm=| "=

# "
M .Maﬁxﬁhlm - X \\u.. - &y, uv

=3

Now
m_mﬁbhc, \wﬁ@v” mM.um

so we need only calculate the first cotumn of H,,',

. , _ s —1
U (Y, ¥ - Yo x(x'x)y 'x; )
— lim =

a2 n

—(X'X)T'XY (YL Yo, — Y X(X'X) _\«;\.._v_._
and we cstimaled the local inconsisicney by

,Wlu
A= . 5 P’
—(X'XYy XY S

where S7 is the mean squarced error from the regression of lagged (once) ¥ on X.
The local inconsistency in & thus has the sign of p”. The local inconsistencies of
the elements of B have minus the sign of the corresponding coefficients of the
regression of lagged y on X (times p).

5 CONCLUSION

Local specification error analysis provides a mcthod of assessing the cffect on
parameter estimztes of small departures from the assumptions of the model. The
method complements the lools of formal specification testing (Davidson—
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MacKinnon [4], Hausman [6], While [12]) since imposing constraints does reduce
variance (Aitchison and Silvey [1]). Hence one may wish to assess the tradeoff
between inconsistency and variance reduction. We have not studied distribution
theory here, but we will nole that with the following additional assumption, the
(fn -normed) restricted MLE minus #° will be asymptotically normally distrib-
uled with zero mean and variance —(H '— ¥ '"R'(RH ~'RYRH ~') when #°
satisfics the restrictions imposcd.

AssuMPTION AS: Vo (0" '2D(#%— N(0, 1) in distribution.

For small ¢, 1t may be appropriate to shill the mean to A and o retain the
variunce formula. To make this technique precise, ¢ must depend on the number
of observatious.

Corncll University
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