MEASURING RUNS CREATED:
THE VALUE ADDED APPROACH

INTRODUCTION

One of the major interests of baseball research has
long been the attempt 1o measure how many of a team’s
runs are created by each player. This article discusses how
runs created can be measured from event data (that is,
looking at each event in the context of play) rather than
from cumulative data, as has been necessary in the past
when only category totals were available, For all regulars
from the 1986 season, we compute both proposed and
older measures of runs created. This paper gxpands on re-
sults reported by the author at the 1986 SABR convention
and presented to am American Statistical Association
meeting.

With only a season’s totals available for each player
(“aggregate data”) the subject of the proper ateribution of
runs created continues to receive refinement and contro-
versy. Two methods, Bill James's runs created and Pete
Palmer’s linear weights, have defined the present state of
ihe art. Both methods attempt to construct an index that
measures runs created by each player using aggregate
data., Both men have attempted to design runs created

methods that are not situation dependent, as are runs

scored and RBI counts, but the act of scoring runs itself is
situation dependent, and so its removal per force creates a
measure that varies from the ideal: We want a statistic that
doesn’t penalize a player for batting in fewer run produc-
ing situations than another, but at the same time rewards
players who perform well in those situations. Our meth-
odology cuts this Gordian knot by directly measuring the
object of interest, the improvement ot deterioration in the
run expectation of the player’s team at the' moment of his
contribution.

Given the precise event data, our frst statistic, RC1
(read, runs created, version 1; marginal Tuns created) is
appropriate for many comparative purposes in the same
way that marginal cost is the appropriate cost measure in
economics, Like Pete Palmer’s linear weights, it 1s essen-
tially mean-corrected, so that zero denotes average per-
formance, and players are measured relative to the aver-
age. A second variant, RC2 (read, runs created, version
2) is presented, which is more descriptive in that it is gen-
erally non-negative and adds to the team’s actual runs
scored when aggregated over a season. As such, it is com-
parable to the James runs created, which will be referred
to below as RCJ. Indeed, 94% of the variation in RC2 is
explained by RCJ in the American League 1986 data, and
91% in the National League. '

Although we don’t emphasize it here, our approach
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unifies the sabermetric study at the micro, or event, level.
It opens up a potentially more powerful and precise ap-
proach to the assessment of runs allowed by pitchers, runs
created or lost on the bases, runs cost by errors in the field.
or even runs lost by bad coaching decisions or umpires’
mistakes. Of course, for starting pitchers ERA does ap-
proximately the same thing, but the biases of this statistic
for relief pitchers are purged with the value added
approach.

VALUE-ADDED

When a batter steps up to the plate, there may be 0,
1. or 2 outs, and any one of 8 runner on base situations.
Thus there are 24 initial game states, abstracting from
other characteristics such as the score, which teams are
playing, who the players on base are, etc. When he fin-
ishes his turn at bat, he will have put his team in any cne
of 25 possible states (the extra state is “3 outs,” and for
our purposes here, 10 loss of generality is incurred in ig-
noring the configuration of the men left on base at the end
of an inning). Let us denote the beginning and ending
states by “s” and “t,” respectively. For gach state, from his
team’s and the league’s data, we may accurately measure
the distribution of runs scored in an inning, conditional on
a team being in that state. Denote the means of these ran-
dom variables (technically, stopping times on & specially
constructed sigma algebra) by E(s) and E(t), and let R de-
note the runs scored during this transition. Then this at bat
produced R —+ E(t) — E(s) = actual rumns scored on at
bat plus expected team’s runs in inning after player bats
moinus expected total team’s runs in inning before player
batted. There are refinements, some of which will be dis-
cussed below, but this is the basic idea.

In words, the RC1 in a plate appearance is positive to
the extent that the batter advanced his team’s cause more
than an average amount, and similarly for negative contri-
butions. It is measured in units of runs, For the general
manager confronted with a —30 run player, this statistic
tells him how many runs his team would improve if he
could bring this position up to the league average. The

. extra runs then could be converted into extra wins by Py-

thagorean theory.

The transitions as a team bats through an inning must,
as is shown below, sum to the actual number of runs
scored, minus the expectation of the state which leads off
each inning of .454 (see Table 1). This is due to the tele-
scoping nature of the sum, and the fact that there is an
absorbing state, 3 outs,” to which almost all innings con-




verge. An example below will make this clear. The excep-
tions are games won in the bottom of the last inning, and
games suspended ip the middle of an inning and not
resumed.

Since, if a hitter does not increase the out count, his
contribution must be positive (we haven't yet discussed
errors) there can be at most 3 negative contributions in an
inning.

We might prefer that the decrements of .454 be redis-
tributed among the batters in the inning, so that the runs
created becomes a total measure, calibrated so as to give
the actual number of runs scored. We call this kind of total
measure RC2, and briefly consider ways of doing this.

To fix ideas, consider an inning in which the leadoff
hitter homers, and the next 3 batters make outs. Using
Table 1, RC! gives the measures 1.000, — 205, —.154,
and —.005, summing to 1 — .454 = .546. Suggestions
to redistribute the .454 and get exactly one run produced
include 3 philosophies:

1. Add .454/4 to all batters appearing in the inning.

2. Add .454/3 to those 3 batters who increased the out
count, making obvious meodifications for double and
triple plays.

3. Add total runs scored in league/total plate appearances
to each batter, For the 1986 AL this was 10449/
86852 =.120308 and 8096/74006=.1093965 in the
NL in 1986,

An advantage of 1 and 3 is that they yield the same
differential contributions as RC1. The leadoff home run in
the example above left the team on average 1.205 ahead
of where they would have been with an out, which uses
up 2035 run when it is the first out. This argument has
much appeal. A drawback is that it gives the leadeff man

more than one tun created for his home run, which after

all does return the team to the beginning state but with an
extra run—all of which should yield precisely one run cre-
ated. Another advantage is that runs created equals runs
scored in every (half) inning, so a fortiori for every game,
for every team-season, and for the league—the various
levels of aggregation. Note that the entries of Table 1 are
estimated from an entire season, and so are average in this
sense. {We have not preserved the distinction between
population averages, the E(s). and their sampled counter-
parts—a reader sophisticated enough to look for the dif-
ference will not be confused.)

The drawback above suggests 2, which redistributes
the decrements among those players most likely to have
negative runs created. It maintains one run for the solo
home run, and implicitly suggests a non-negativity of runs
created per plate appearance desideratum: Since runs are
negative, why not extend this same property 1o runs cre-

ated? This method does more to move the negatives to-

ward zero than 1, although it can’t totally succeed, without
causing further difficulties. To see this, note that to bring
all batters to non-negative numbers, we’d have to over-
compensate by adding .205 times 3 = .615, and we’d
have to take .615 — .454 = .161 off the home run—and
this for a scheme which awarded .205—.095 = .110 of
a run for making the final out! Another objection is that
outs are already taken into consideration by RCI, so an
adjustment based on them would result in “double count-

ing.” This method shares the advantage of having the runs
balance out over every half-inning.

Both submethods 1 and 2 divide .454 explicitly; in-
stead, we could use 3 above and take the total plate ap-
pearances divided into the total runs for a league season
and add this to each at bat; this would give correct runs
created on average, although inning totals wouldn’t nec-
essarily be correct. The argument is, there is unnecessary
noise introduced by requiring them to add, along with a
mixing of the level of aggregation. This is the method used
below in the RC2 caleulation. The author is not adamant
in its use, however, and encourages discussion on this
point in the sabermetric community before the next edition

of this book,

From Palmer’s simulations reported in The Hidden
Game, we report his table giving the B(s) entries for the
24 states:

Table 1
Expected Future Runs In An Inning,
Conditional On The State

Quts

Runners 0 1 2

None a 454 b 249 ¢ 095
st d 783 e 478 f 209
2nd g 1068 h 698 i 348
3rd j 1.277 % 897 1 382
1st, 2nd m 1.380 n 888 o 457
1st, 3rd p 1639 g 1.088 r 494
2nd, 3rd s 1946 t 1371 661
1st, 2nd, 3rd v 2.254 w1546 X 798

We have added the Project Scoresheet notation for the
states. The idea of using these states, incidentally, goes
back at least to the fundamental 1963 paper in Operations
Research, “An Investigation of Strategies in Baseball,” by
George Lindsey, and is implicit in the work of anyone hav-
ing done serious study in any branch of science. The RC
measures proposed here are similar in spirit to the Mills’s
“plaver win average,” aithough the measures address quite
different questions.

Rather than simulate, we will in the future estimate
these expectations from the 2106 X 80 = 168,480 or so
such situations which arise over a major league season.
There will be some statistical subtley here, for we are
doing inference on realizations of a Markov chain with no
ergodic events and with obvious statistical dependences.
Variances, rather than our estimates themselves—
means—will be affected by the fact that the same inning,
say, with a leadoff home run, will have the 0000 or “a"
state occurring at least twice, followed by the same events
for the rest of the inning entering into the sample, In
theory, one could estimate a Markov half inning transition
matrix and derive estimates for the entries in table 1. This
method has two drawbacks. First, the standard errors are
very complicated functionals of the model parameters.
Worse, model specification error would enter, and would
be avoidable with the direct, nonparametric approach sug-
gested above. The parameters of the transition matrix
nevertheless are of independent interest, however, and will
be estimated for various subsets of the data.

The measures of runs created reported below use -
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Table 1. We will sometimes refer to a state not by its letter
but by four numbers, as the 0000 above. The firstis O, 1,
or 2 and gives the outs; the next 3 are 0 or 1, depending
on whether the base is unoccupied or not.

We do expect to see league differences in our esti-
mated versions of Table 1. since pitchers bat in the Na-
tional League. Consequently the relevant sample size wiil
be smaller by roughly half. In fact, RC1 for National
League pitchers have been computed (but not reported be-
low) and are uniformly negative, as expected.

DETAILED EXAMPLE OF THE CALCULATION

A runner is on first, nobody out. The batter singles,
the runner on first stopping at second. The third bater
follows with an RBI single, leaving runners at first and
second. The next batter grounds into a 6-4-3 double play,
the runner advaneing to third. A strikeout ends the inning.

The official statistics give the second batter a hit only.
He didn’t score the run or bat it in, yet he was as mstru-
mental in manufacturing the run as the players who re-
ceived the RBI or run scored. The value added approach
(refer to Table 1 above} gives him 1.380 ~ .783 = .397

runs. The leadoff hitter gets 783 — .454 = .329, and the

third hitter gets 1 run, since the runners ended up at first
and second, the same state he found them in. The double
play gave the fourth batsman .382 — 1.380 = —.998,
and the strikeout stranding the runner on third was — .382.
The team earned 1.926 runs and lost 1.380 runs, giving a
total of .546 above the initial state or league average of
454,

If the total decrements of .454 are added by redistrib-

uting them among the batters in the inning, we getan RC2
measure of exactly 1.

FURTHER DEVELOPMENTS: BATTING, RUNNING,
AND FIELDING

For each transition, we know whether the batter’s turn
at bat terminated or not. In Project Scoresheet these are
referred to as batting events and non-batting events, re-
spectively. If the leadoff batter walks and steals second,
(the latter is a non-batting event), then the second batter’s
initial state s is 0010 — O outs, man on second, not
the 0100 — O outs, man on first—that prevailed when he
came to the plate. The man who stole second earned
1.285 — .783 = .402 of a run (RC1) for his stolen base,
and baserunning runs created may be kept as a separate
category in this way. Similarly, errors create runs for the
opposition, and may be accounted for by introducing a
fictitious state of errorless play between the events involv-
ing the error. Another example will make this clear.

Say the leadoff man reaches on an error. Just as in
batting average calculation, we may act from the batter’s
perspective as though he had been put out. The fictitious
state here is 1000 — 1 out no one on. Now the transition
0000 to 1000, worth .249 — 454 = — 205 is awarded
the batter, and the transition 1000 to 0100 worth .783
—249 = 534 gives the runs created by the error. If the
next 3 batters strike out, the team run potential is again
reduced to 0, and their RC1 decrement is .783. Thus, the
team has an RC1 total of —.205 + —.783 = — 938,
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they were given .534 of a run by the opposition, bringing
us back to the familiar .454. Since they scored no runs, 1o
get an RC2 1o equal zero, there were in effect 4 “outs™
inflicting negative runs created, and the “gift” of the error
might be redistributed along with the .434. Errors are not
so treated in the results given below, although further re-
finements may incorporate them.

Observe that the 1000 to 0100 transition causes outs
to. decrease, and 50 is impossible according to baseball
rules. Nevertheless, there is nothing stopping our evalu-
ating this contrafactual state transition, and indeed there is
a necessity to do this to properly evaluate the error.

Present Project Scoresheet data structures, and doubt-
less others as well, will make this decomposition difficult
for some errors, notably errors allowing runners to ad-
vance on a plav. Errors allowing the batter to reach are
more adequately represented. Unfortunately. we need in
both cases a set of heuristics to guess the result of errorless
play. Here as in many areas, theory runs ahead of practice.

ELIMINATION OF SITUATION DEPENDENCE

Besides measuring precisely and directly our objec-
tive, the value added approach has a reasonable chance at
correcting for “situation dependence” Several factors
point to this conclusion, although ultimately a minor re-
finement may still be in order. '

A player who bats with many men on base will have
high Efs) values for leaving lots of men on base to subtract
from the high R and E(t} values he earns. In the example,
the three singles were worth .329, .397, and 1 run and not
equal amounts, reflecting the obvicus fact that run pro-
duction is situation dependent. The batter who hit with 2
men on base also had most to lese by not producing, as
the next paragraph shows.

To see the way the value added approach corrects for
situation dependence while properly acknowledging it.
consider a player batting with the bases loaded and 2 out.
A walk credits him with an entire run, whereas a leadoff
walk in an inning is only worth .299. But had he struck
out with the bases loaded and 2 out, he would have cost
his team .798 — 0O (expected runs after 3 outs!) = .758
of a run, whereas a leadoff strikeout costs .454—propi-
tious situations will amass high totals of the traditional
count data (runs and RBI) but these should have subtracted
from them many runs destroyed from his fatlures.

AT a higher level of sophistication, consider a hitter,
say Wade Boggs (our 1986 AL RC leader}, batting in the
highest E(s) state, 0111, from which 2.254 runs are ex-
pected, and the lowest state, 2000, trom which .095 runs
are expected. We can take Boggs’ season totals and make
educated guesses as to the transition probabilities from
these states to any other states. This would let us compute
conditional runs created from each state, for both an in-
dividual player and the league average. Then, for there to
be bias for Boggs, two things must be present. First, there
must be variation in the conditional runs created across the
states, which the paragraph above argues (but does not
prove) will be minimal. Second, Boggs must find himseif
with a distribution of at bats among the 24 states that is
significantly different from the league averages. This may
happen for pinch hitters, and to a lesser extent for leadoff



hitters, who start off the game in the same state. It is an
empirical question how large these discrepancies are, if
any. If found significant, a further correction to RC2 is in
order.

REMARKS

1. A sacrifice fly is always a fly, usually an out, but
hardly ever a sacrifice, and not an official at bat. Conven-
tional treatment thus seems dubious. In our scheme, it is
properly evaluated, since its effect is the same as any other
occurrence which changes the state in the same way.
Clearly the concept of “state” is intended to be a statisti-
cally “sufficient” description, capturing all and only what
is essential for analysis. For some purposes, mentioned
below, it may be advisable to add other information such
as the score, but that 1s not necessary for the issue at hand.

2. A ground out accomplishing the same thing as a
sacrifice bunt is here given the same credit, unlike in the
official statistics. A sacrifice bunt effecting 0100 to 1010
is worth - .084, explaining why some managers use it so
selectively. Since it does create an out, it would get a net
positive value after an RC2 redistribution.

3. A three-run home run should be worth less than
three runs to the batter, as the runners have some likeli-
hood of being driven in by a subsequent hitter. Our state
change adjusts for this. The double counting here has be-
deviled other methods.

4. Pitching, especiaily relief pitching, may be ana-
lyzed with the obvious use of the value added method.
However, since the game is so often on the line, one may
prefer a score dependent version in which we evaluate not
expected runs in the inning but the probability of winuing
the game in place of E(s) and E(t)—the player win aver-
age. -

5. Runner speed isn't properly adjusted yet: if a single
sends & runner to third, the credit goes to the hitter and not
the runner. With more (judgmental) data, this second order
effect could be corrected.

6, Intentional walks are arguably not given special

treatment. One place where this is clearly aberrant is in tie
games in the bottom of the ninth inning or later, when the
man being walked “means nothing.” Then the run distri-
bution is truncated, and from a different population than

.that used to estimate runs created. This is likely a third

order correction, or higher.

EMPIRICAL RESULTS

The Tables below give (mean corrected} RC1, (total,
positive} RC2 and the technical version of Bill James's
runs created, listed under RCJ.

While we leave extensive comparison to another time,
a few points may be made, First, cur measure does not
give “runs created or destroved attempting to steal,” which
Bilt’s runs created method does allow for. A further re-
finement of RC1 and RC2 on this issue is obviously ap-
propriate. This explains our understatements for Coleman,
Henderson and Wilson. Second, the high percentage of
explained variations of RC2 by RCJ—94% in the Ameri-
can League, 91% in the National League—have been
noted. Third, the names of Boggs and Mattingly atep the
AL and Schmidt and Raines atop the NL according 1o both
methods is expected and reassuring. Finally, the diminu-
tion of agreement as one progresses toward lower RC2 and
RCIJ totals reminds us that RCJ was constructed on the
basis of team aggregate data. Forcing it to apply to regular
plaver totals—a sample of 600 or 700 plate appearances—
is one thing; applying it to smaller totals requires its ex-
trapolation outside the region in which it was fit. Statistical
models always show such “out of sample” deterioration.*

*Editor’s note: The runs created formula—technical ver-
sion works with very small data samples, as is shown by the fact
that it works well with games, and with very large ones such as
leagues. I strongly suspect that the failure of agreement at low
levels of plate appearances occurs because the failures of both
methods are most apparent in small data sets where long-term
randomizing factors have not acted (o disguise them.

1986 AMERICAN LEAGUE RUNS CREATED

RC1RC2RCY
Allangon, Cle ~-12 27 22 Boggs, Bos
Armas, Bos +14 68 49 B. Bonilta, Chi
Baines, Chi +29 103 87 J. Bonilla, Bal
Baker, Oak -3 29 24 Boone, Cal
Balboni, KC - 6 73 67 Boston, Chi
Bando, Cle -2 32 27 P. Bradley, Sea
Barfield, Tor 44 125 122 Braggs, Mi!
Barrett, Bos +16 102 87 Brantley, Sea
Bathe, Oak -8 6 7 Brett, KC
Baylor, Bos 9 82 9 Brookens, Det
Beane, Minn -3 10 12 Brunansky, Minn
G BeH, Tor —-30 113 113 Buckner, Bos
Benlquez, Bal ~ 7 54 51 Buechele, Tex
Bergman, Det - 5 14 1§ Burleson, Cal
Bernazard, Cle +15 92 496 Bush, Minn
Berra, NY + 3 17 12 Butler, Cle
Biancalana, KC -3 22 20 Calderon, Chi
Bochte, Dak +14 71 52 Cangelosi, Chi

RC1RC2RCJ RC1RC2RCY
—58 142 133 Canseco, Oak —23 106 89
0 32 32 Carter, Cle —35 122 116
—10 28 25 Castillo, Cle +~ 7 33 25
o —20 &1 39 Cerone, MIt - 7 22 25
-3 24 28 Coles, Det -+ 7 78 81
+26 100 99 Collins, Det ~22 36 49
-9 19 20 Cooper, Mil +10 80 &0
-7 6 9 J. Cruz, Chi -7 23 20
+29 92 89 A. Davis, Sea +20 B3 78
— 2 36 32 M. Davis, Oak 0 64 T2
-5 74 78 DeCinces, Cal +13 82 72
+ 4 86 76 Deer, Mil +18 84 82
-7 55 o4 Dempsey, Bal -19 27 4
+ 9 46 40 Downing, Cal 437 113 96
+12 61 53 Dwyer, Bal + 1 24 27
0 82 84 Easler, NY +14 79 76
-8 8 11 Da. Evans, Det +12 84 85
- 7 56 5b Dw. Evans, Bos +34 111 100
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RCtRC2ZRCY RC1RC2RCJ RC1RC2RCY

Felder, Mil - 8 13 17 R. Law, KC - 7 48 40 Rice, Bos +28 112 115
Fernandez, Tor + 7 95 89 R. Leach, Tor - 3 356 35 Riles, Mil -11 &0 59
Fischlin, NY -5 98 & l.emon, Det -4 51 B2 Ripken, Bal +25 110 102
Fisk, Chi -10 49 39 Lombardozzi, Minn —15 47 50 Robldoux, Ml -5 21 19
Fletcher, Tex + 7 79 76 Lowry, Det + 4 25 24 Raenicke, NY + 4 24 22
Foster, Chi -3 3 4 Lynn, Bal +28 83 69 Romero, Bos -1 31 19
Franco, Cle -4 81 76 Lyons, Chi -3 14 13 Salas, Minn - 8 25 27
Gaetti, Minn =21 100 99 Marning, Mi +156 42 27 Salazar, KC -3 35 26
Gagne, Minn + 1 64 §7 Martinez, Tor - 6 16 12 Schofield, Cal + 4 67 63
Gantner, Mil —22 43 56 Mattingly, NY +48 137 150 Schroeder, Mll - 7 22 22
D. Garcia, Tor — 5 49 44 McDowell, Tex -13 64 83 Sheets, Bal +21 B5 47
Gedman, Bos + 2 63 59 McRae, KC -2 34 20 Shelby, Bal -3 49 398
K. Gibson, Det +26 B8 388 Meacham, NY —-13 10 13 Sheridan, Det + 3 34 27
Grich, Cal - 2 42 46 Mercado, Tex -11 3 7 Sierra, Tex -10 40
Griffey, NY -1 25 3 Molitar, Mit -13 71 65 Slaught, Tex + 5 46 42
Giritfin, Oak -8 70 71 Maore, Mil - 1 32 27 Smalley, Minn -11 74 70
Grubb, Det +33 62 54 Morman, Chi -2 20 19 Lo. Smith, KC -2 70 77
- Gruber, Tor + 9 28 8 Moseby, Tor + 9 B9 86 Snyder, Cle -10 62 58
Guitlen, Chi -23 48 43 Moses, Sea —-16 37 40 Stefero, Bal -1 18 12
Gutlerrez, Bal -14 4 8 Motley, KC -14 14 16 Sullivan, Bos -6 10 9
Hairston, Chi + 2 32 3 Mulliniks, Tor +16 63 48 Sundberg, KC -~ 7 52 44
M. Hall, Cle +24 82 75 Dw. Murphy, Oak  + 4 52 51 Sveum, Mit - 5 38 37
Harrah, Tex -1 42 356 E. Murray, Bal +32 101 92 Tabler, Cle 14 75 74
Hatcher, Minn - 2 43 36 Nichols, Chi + 2 20 12 Tartabull, Sea +29 899 85
Heath, Det -2 10 12 O’Brien, Tex —42 119 98 Tettleton, Oak + 2 33 A
R. Henderson, NY — 4 80 112 O’Malley, Bal - 2 26 18 Thornton, Cle +12 70 55
Hendrick, Cal + 8 47 42 Oglivie, Mil +~ & 52 45 Tolleston, NY -5 32 33
Herndon, Det — 3 35 36 Orta, KC + 2 45 42 Traber, Bal +13 42 32
D. Hill, Oak -9 35 41 S. Owen, Bos —-18 36 40 Trammell, Det +17 96 95
Howell, Cal +10 31 27 Paciorek, Tex + 2 28 22 Upshaw, Tor + 4 83 80
Hrhek, Minn +36 112 93 Pagliarulo, NY + 7 75 74 Walker, Chi +24 62 48
Hulett, Chi -30 36 49 Parrish, Det +16 61 57 Ward, Tex + 7 57 56
Incaviglia, Tex + 8 81 82 Parrish, Tex +28 91t 80 Washington, NY - 4 13 16
G. lorg, Tex + 3 45 35 Pasqua, NY +22 62 62 Whitaker, Det - 4 B2 82
Re. Jackson,Cal -13 75 68 Petralli, Tex + 18 14 F. White, KC +13 88 B84
Jacoby, Cle —26 102 B8 Pettis, Cal -1 7 M Whitt, Tor - 2 50 58
Javier, Qak -8 23 11 Phelps, Sea -33 86 81 Wiggins, Bal -9 23 24
C. Johnson, Tor -19 66 52 Phiilips, Oak +11 75 63 Wilfong, Cal -11 28 23
R. Jones, Cal + 9 65 60 Porter, Tex +11 32 30 Witkerson, Tex — 5 25 1%
Joyner, Cal +26 107 96 Presley, Sea +11 91 80 Willard, Oak + 6 29 23
Kearney, Sea -3 24 20 Pryor, KC -1 3 3 W. Wllsan, KC —36 46 76
Kingery, KC -6 21 2 Puckett, Minn +37 124 127 Winfield, NY +25 104 89
Kingman, Qak -11 682 57 Quirk, KC -8 2t 22 G. Wright, Tex -7 6 7
Kittle, NY -3 37 34 Randolph, NY +10 83 77 Wynegar, NY -1 26 20
Lacy, Bal - 3 62 62 Rayford, Bal -16 11 14 Yeager, Sea -4 13 9
Lansford, Oak -1 76 &0 Reed, Minn - 8 14 17 M. Young, Ral 0 51t 47
Laudner, Minn o0 27 30 Reynolds, Sea —-36 22 37 Yount, Mil +26 98 94

1986 NATIONAL LEAGUE RUNS CREATED

RC1RC2RCJ RC1RC2ZRCJ RC1RC2RCJ

Aguayo, Phi -3 13 13 " Bream, Pitt +11 75 79 J. Cruz, Hou +26 84 68
Aldrete, SF + 2 30 31 Brenly, SF + 3 64 71 Daniels, Cin +17 3% 40
Almon, Pitt +14 39 25 Brock, LA + 5 45 42 Daulton, Phi + 7 27 26
Anderson, LA -3 23 20 Brooks, Mon ~18 55 686 C. Davls, SF +10 78 83
Ashby, Hou - § 33 40 Brown, SF —1i8 69 65 E. Davls, Cin -31 84 95
Backman, NY -~ 5 43 B89 M. Brown, Pitt —-10 20 20 G. Davis, Hou +21 93 100
Bailey, Hou - 5 156 13 Butera, Cin -3 18 15 J. Davis, Chi - 3 61 66
Bass, Hou +13 83 97 Cabell, LA - 5 27 26 Dawson, Mon — 2 88 75
Bell, Cin +186 88 91 Candaele, Mon - B 4 B Dernier, Chi -10 29 30
Belliard, Pitt -14 25 26 G. Carter, NY +15 78 T2 B. Diaz, Cin - 3 54 59
Benedict, Atl -4 16 13 Cey, Cht +13 46 53 M. Diaz, Pitt + 3 28 33
Bilardello, Mon -i2 11 13 Chambliss, Atl +10 25 20 Doran, Hou - =10 60 B
Boghy, SD + 2 18 2 Clark, StL + 2 33 38 Duncan, LA -34 15 38
Bonds, Pitt + 5 58 64 W. Clark, SF + 1 51 82 Dunston, Chi -16 51 &4
Boniliia, Pitt -10 15 21 Coleman, StL -42 32 &7 Durham, Chi +12 73 78
. Bosley, Chi -2 13 17 Concepeion, Cin - — 7 31 33 Dykstra, NY +15 69 80



RC1RC2RCJ RCi1RCZRCJ RC1RC2RCJ

Esasky, Cin - 4 38 44 Marshall, LA =~ 9 49 42 Russell, LA -4 235 2
Fitzgeraid, Mon + 4 3 34 C. Martlnez, SD -6 25 & Russell, Phi ~ 7 45 42 -
Flannery, 5D - 1 46 50 D. Martinez, Chi -1 11 4 Sample, Atl ~ 1 26
Ford, SiL 0 26 27 Matthews, Chi + 4 51 63 Samuel, Phi ~ 3 72 80
Foster, NY - 2 26 28 Matuszek, LA - 5 30 29 Sandberg, Chi + 2 77 88
Francona, Chi + 1 16 11 Mazzilll, NY - 4 17 13 Santana, NY -19 28 27
Galarraga, Mon + 1 40 43 McGee, StL —-18 41 B3 Sax, LA —-11 88 110
Garner, Hou -1 37 39 McReynolds, SO +24 94 103 Schmidt, Phi +47 119 122
Garvey, S0 . - 7 57 58 Melvin, SF -14 17 23 Schu, Phi -1 25 32
Gladden, SF + 8 52 49 Mliner, Cin — 555 59 Scioscia, LA -10 39 49
Gwynn, SD +20 97 113 K. Mitchell, NY - &6 34 B2 Simmons, Atl -5 21 16
J. Hamilton, LA + 6 23 12 Moreland, Chi -12 60 72 Q. Smith, StL +10 77 73
T. Harper, Atl -5 27 30 Moreno, Atl -16 26 32 Speier, Chi +16 35 24
B. Hatcher, Hou — & 43 47 Morris, StL -3 9 8 Stlllwell, Cin . — 9 25 24
Hayes, Phi +36 112 111 Motley, Atl -1 2 1 J. Stone, Phi - 6 24 36
Hearn, NY -5 11 16 Mumphrey, Chi - 2 356 45 Strawberry, NY +19 B0 92
Heath, StL -7 17 7 D. Murphy, Al +28 104 102 Stubbs, LA - 3 48 51
Heep, NY +12 37 3 Nettles, SD + 4 48 M Templeton, SD -26 34 44
K. Hernandez, NY —39 111 106 Newman, Mon 0 23 23 Teufel, NY -1 34 34
Hetr, Stl. —16 56 69 Cherkfell, Atl + 1 66 72 A, Thomas, Atl -13 24 26
Horner, Atl +22 85 79 Qester, Cin - 8 56 59 M. Thompson, Phi — 8 28 34
Hubbard, Atl - 5 48 47 Qquendo, StL + 4 21 17 R. Thompson, SF —18 43 64
Hurdle, StL ~ 4 16 16 Ortiz, Pitt - 5 18 16 Thon, Hou - 9 26 28
D. lorg, SD -5 "7 8 Pankovitz, Hou - 4 10 14 Trevino, LA + 1 27 28
Jeltz, Phi —-13 43 40 Parker, Cin +36 113 94 Trillo, Chi +12 31 2
H. Johnson, NY +12 40 36 Pena, Pitt - 9 52 68 Uribe, SF —-17 40 43
W. Johnson, Mon - 1 13 14 Pendleton, StL -32 37 50 Van Slyke, StL +16 67 68
Kennedy, SD ~ 2 54 54 Perez, Cin -6 31 24 Venable, Cin - 2 16 15
Khalifa, Pitt -1 0 9 Puhl, Hou -1 11 18 Virgil, Atl + 1 48 49
Knight, NY +18 77 70 Quinones, SF 0 13 & C. Walker, Chi -8 4 14
Krenchicki, Mon - 8 19 22 Raines, Mon ~24 96 130 Wallach, Mon - 5 b4 57
Kruk, SD +16 52 47 Ramierez, Atl -40 18 42 Walling, Hou +19 65 67
Kutcher, SF —-10 12 20 Ray, Pitt +16 87 79 Washington, Atl - 6 10 18
Landreaux, LA - 2 32 32 Redus, Phi + 3 46 55 U. Washington, Pitt 0 17 12
Landrum, StL - 8 17 17 C. Reynelds, Hou - 5 31 28 Webster, Mon — 5 66 90
Larkin, Cin + 4 22 22 R. J. Reynolds, Pi 0 50 55 Willlams, LA + 8 45 37
Lavalilere, StL -7 3 3 Rn. Reynolds, Phi - 9 § 9 G. Wilson, Phi +16 86 76
V. Law, Mon - 4 40 34 L. Rivera, Mon - 58 15 15 M. Wilson, NY - 4 50 58
Leonard, SF -2 39 4 Roherts, 5D ~ 1 29 20 Winnlngham, Mon — 8 13 17
Lopes, Hou +12 33 34 R. Roenicke, Phi  ~ 9 47 42 G. Wright, Mon -11 4 8
Madlock, LA +10 56 52 Rose, Cin + 3 33 23 Wynne, SD + 7 41 32
Maldonado, SF +10 58 51 Royster, SD -4 28 N Youngblood, SF - 7 30 25
CONCLUSION

It is not surprising that a different sabermetric ap-  base, as has been made available by Project Scoresheet.
proach to runs created emerges when methodologies from As is always troe in science, the new builds on the old,
statistics (regression, expectation, state space Markov  and will in turn be refined. It is hoped that the new meth-
chain framework) and economics (value-added, marginal  odology introduced here will be developed and incorpo-
and average) are combined with a vastly superior data rated into mainstream sabermetric analysis.
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